Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 362: 142729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971438

RESUMEN

17 global Sustainable Development Goals (SDGs) were established through the adoption of the 2030 Agenda for Sustainable Development by all United Nations members. Clean water and sanitation (SDG 6) and industry, innovation, and infrastructure (SDG 9) are the SDGs focus of this work. Of late, various new companies delivering metal-organic frameworks (MOFs) have blossomed and moved the field of adsorption utilizing MOFs to another stage. Inside this unique circumstance, this article aims to catch recent advancements in the field of MOFs and the utilizations of MOFs relate to the expulsion of arising contaminations that present huge difficulties to water quality because of their steadiness and possible damage to environments and human wellbeing. Customary water treatment techniques regularly neglect to eliminate these poisons, requiring the advancement of novel methodologies. This study overviews engineering techniques for controlling MOF characteristics for better flexibility, stability, and surface area. A current report on MOFs gathered new perspectives that are amicably discussed in emergent technologies and extreme applications towards environmental sectors. Various applications in many fields that exploit MOFs are being fostered, including gas storage, fluid separation, adsorbents, catalysis, medication delivery, and sensor utilizations. The surface area of a wide range of MOFs ranges from 103 to 104 m2/g, which exceeds the standard permeability of several material designs. MOFs with extremely durable porosity are more significant in their assortment and variety than other classes of porous materials. The work outlines the difficulties encountered in the synthesis steps and suggests ways to make use of MOFs' value in a variety of contexts. This caters to creating multivariate systems enclosed with numerous functionalities, leading to the synthesis of MOFs that offer a synergistic blend of in-built properties and exclusive applications. Additionally, the MOF-related future development opportunities and challenges are discussed.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Purificación del Agua , Estructuras Metalorgánicas/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Desarrollo Sostenible
2.
Med Oncol ; 41(7): 182, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900329

RESUMEN

Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.


Asunto(s)
Interleucina-6 , Neoplasias , Transducción de Señal , Humanos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inhibidores , Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Animales , Progresión de la Enfermedad , Factor de Transcripción STAT3/metabolismo , Antineoplásicos/uso terapéutico
3.
Chemosphere ; 362: 142655, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908444

RESUMEN

Lead is used in many industries such as refining, mining, battery manufacturing, smelting. Releases of lead from these industries is one of the major public health concerns due to widespread persistence in the environment and its resulting poisoning character. In this work, the castor seed shell (CSS) waste was exploited for preparing a beneficial bio-adsorbent for removal of Pb(II) ions from water. The raw CSS was modified with H3PO4 at different acid concentrations, impregnation ratios, activation times, and temperatures. An optimum adsorption capacity was observed for CSS modified with 2 M acid, 5 mL g-1 solid to liquid ratio, treated at 95 °C for 160 min. Exploiting acid modification, the SEM, XRD, and FTIR analyses show some alterations in functional groups and the surface morphology of the biomass. The impacts of physiochemical variables (initial lead ions concentration, pH, adsorbent dose and adsorption time) on the lead removal percentage were investigated, using response surface methodology (RSM). Maximum removal of 72.26% for raw CSS and 97.62% for modified CSS were obtained at an initial lead concentration (50 mg L-1), pH (5.7), adsorption time (123 min) and adsorbent dosage (1.1 g/100 mL). Isothermal and kinetics models were fitted to adsorption equilibrium data and kinetics data for the modified CSS and the adsorption system was evaluated thermodynamically and from the energy point of view. Isothermal scrutinization indicated the mono-layer nature of adsorption, and the kinetics experimental outcomes best fitted with the pseudo-second-order, implying that the interaction of lead ions and hot acid-treated CSS was the rate-controlling phenomenon of process. Overall, results illustrated that the hot acid-treated biomass-based adsorbent can be considered as an alternative bio-adsorbent for removing lead from water media.


Asunto(s)
Plomo , Ácidos Fosfóricos , Semillas , Contaminantes Químicos del Agua , Adsorción , Plomo/química , Plomo/aislamiento & purificación , Semillas/química , Ácidos Fosfóricos/química , Contaminantes Químicos del Agua/química , Cinética , Purificación del Agua/métodos , Ricinus communis/química , Concentración de Iones de Hidrógeno
4.
Environ Res ; 252(Pt 3): 118976, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705451

RESUMEN

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.


Asunto(s)
Compuestos de Alumbre , Industria Lechera , Fosfatos , Aguas del Alcantarillado , Adsorción , Fosfatos/química , Aguas del Alcantarillado/química , Compuestos de Alumbre/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cinética , Modelos Químicos
5.
Talanta ; 276: 126292, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795646

RESUMEN

In recent decades, analytical techniques have increasingly focused on the precise quantification. Achieving this goal has been accomplished with conventional analytical approaches that typically require extensive pretreatment methods, significant reagent usage, and expensive instruments. The need for rapid, simple, and highly selective identification platforms has become increasingly pronounced. Molecularly imprinted polymer (MIP) has emerged as a promising avenue for developing advanced sensors that can potentially surpass the limitations of conventional detection methods. In recent years, the application of MIP-silica materials-based sensors has garnered significant attention owing to their distinctive characteristics. These types of probes hold a distinct advantage in their remarkable stability and durability, all of which provide a suitable sensing platform in severe environments. Moreover, the substrate composed of silica materials offers a vast surface area for binding, thereby facilitating the efficient detection of even minuscule concentrations of targets. As a result, sensors based on MIP-silica materials have the potential to be widely applied in various industries, including medical diagnosis, and food safety. In the present review, we have conducted an in-depth analysis of the latest research developments in the field of MIPs-silica materials based sensors, with a focus on succinctly summarizing and elucidating the most crucial findings. This is the first comprehensive review of integration MIPs with silica materials in electrochemical (EC) and optical probes for biomedical analysis and food safety.


Asunto(s)
Inocuidad de los Alimentos , Polímeros Impresos Molecularmente , Dióxido de Silicio , Dióxido de Silicio/química , Polímeros Impresos Molecularmente/química , Técnicas Biosensibles/métodos , Humanos , Impresión Molecular , Técnicas Electroquímicas/métodos
6.
Cell Biochem Funct ; 42(3): e3993, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532685

RESUMEN

About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/patología , ARN Largo no Codificante/genética , Estrógenos , Proliferación Celular/genética , Receptores de Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica
7.
Med Oncol ; 41(3): 69, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311682

RESUMEN

Pre-messenger RNA molecules are back-spliced to create circular RNAs, which are non-coding RNA molecules. After a thorough investigation, it was discovered that these circRNAs have critical biological roles. CircRNAs have a variety of biological functions, including their ability to operate as microRNA sponges, interact with proteins to alter their stabilities and activities, and provide templates for the translation of proteins. Evidence supports a link between the emergence of numerous diseases, including various cancer types, and dysregulated circRNA expression. It is commonly known that a significant contributing element to cancer development is the disruption of numerous molecular pathways essential for preserving cellular and tissue homeostasis. The dysregulation of multiple biological processes is one of the hallmarks of cancer, and the molecular pathways linked to these processes are thought to be promising targets for therapeutic intervention. The biological and carcinogenic effects of circRNAs in the context of cancer are thoroughly reviewed in this article. Specifically, we highlight circRNAs' involvement in signal transduction pathways and their possible use as novel biomarkers for the early identification and prognosis of human cancer.


Asunto(s)
MicroARNs , Neoplasias , Humanos , ARN Circular/genética , Neoplasias/genética , Neoplasias/patología , ARN Mensajero , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...