Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 73, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715119

RESUMEN

BACKGROUND: Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS: The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS: Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS: In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Enfermedad por Cuerpos de Lewy , Microglía , Enfermedades Neuroinflamatorias , Humanos , Enfermedad por Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Femenino , Masculino , Anciano , Anciano de 80 o más Años , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Microglía/patología , Microglía/metabolismo , Astrocitos/patología , Astrocitos/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Antígenos CD/metabolismo , Péptidos beta-Amiloides/metabolismo , Persona de Mediana Edad , Antígenos de Diferenciación Mielomonocítica/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Molécula CD68
2.
Cells ; 12(10)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37408202

RESUMEN

Growing evidence suggests a crucial role of neuroinflammation in the pathophysiology of Parkinson's disease (PD). Neuroinflammation is linked to the accumulation and aggregation of a-synuclein (αSyn), the primary pathological hallmark of PD. Toll-like receptors 4 (TLR4) can have implications in the development and progression of the pathology. In this study, we analyzed the expression of TLR4 in the substantia nigra (SN) and medial temporal gyrus (GTM) of well-characterized PD patients and age-matched controls. We also assessed the co-localization of TLR4 with pSer129 αSyn. Using qPCR, we observed an upregulation of TLR4 expression in the SN and GTM in PD patients compared to controls, which was accompanied by a reduction in αSyn expression likely due to the depletion of dopaminergic (DA) cells. Additionally, using immunofluorescence and confocal microscopy, we observed TLR4-positive staining and co-localization with pSer129-αSyn in Lewy bodies of DA neurons in the SN, as well as in pyramidal neurons in the GTM of PD donors. Furthermore, we observed a co-localization of TLR4 and Iba-1 in glial cells of both SN and GTM. Our findings provide evidence for the increased expression of TLR4 in the PD brain and suggest that the interaction between TLR4 and pSer129-αSyn could play a role in mediating the neuroinflammatory response in PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Cuerpos de Lewy/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
3.
Transl Neurodegener ; 11(1): 52, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36474289

RESUMEN

BACKGROUND: Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS: α-Synuclein, phosphorylated (p-)tau, and amyloid-ß pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS: Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and  more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-ß pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS: Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Corteza Insular , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA