Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nature ; 618(7964): 365-373, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225978

RESUMEN

Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.


Asunto(s)
Ácidos Grasos , Glucosa , Corazón , Leche Humana , Ácido gammalinolénico , Femenino , Humanos , Recién Nacido , Embarazo , Cromatina/genética , Ácidos Grasos/metabolismo , Ácido gammalinolénico/metabolismo , Ácido gammalinolénico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Corazón/efectos de los fármacos , Corazón/embriología , Corazón/crecimiento & desarrollo , Homeostasis , Técnicas In Vitro , Leche Humana/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Receptores X Retinoide/metabolismo , Factores de Transcripción/metabolismo
3.
Nat Metab ; 2(9): 974-988, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32943786

RESUMEN

Proinflammatory macrophages are key in the development of obesity. In addition, reactive oxygen species (ROS), which activate the Fgr tyrosine kinase, also contribute to obesity. Here we show that ablation of Fgr impairs proinflammatory macrophage polarization while preventing high-fat diet (HFD)-induced obesity in mice. Systemic ablation of Fgr increases lipolysis and liver fatty acid oxidation, thereby avoiding steatosis. Knockout of Fgr in bone marrow (BM)-derived cells is sufficient to protect against insulin resistance and liver steatosis following HFD feeding, while the transfer of Fgr-expressing BM-derived cells reverts protection from HFD feeding in Fgr-deficient hosts. Scavenging of mitochondrial peroxides is sufficient to prevent Fgr activation in BM-derived cells and HFD-induced obesity. Moreover, Fgr expression is higher in proinflammatory macrophages and correlates with obesity traits in both mice and humans. Thus, our findings reveal the mitochondrial ROS-Fgr kinase as a key regulatory axis in proinflammatory adipose tissue macrophage activation, diet-induced obesity, insulin resistance and liver steatosis.


Asunto(s)
Dieta Alta en Grasa , Inflamación/fisiopatología , Activación de Macrófagos , Obesidad/enzimología , Obesidad/fisiopatología , Proteínas Proto-Oncogénicas/metabolismo , Familia-src Quinasas/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Hígado Graso/genética , Hígado Graso/fisiopatología , Resistencia a la Insulina , Interleucina-1beta/biosíntesis , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Obesidad/genética , Proteínas Proto-Oncogénicas/genética , Especies Reactivas de Oxígeno/metabolismo , Familia-src Quinasas/genética
4.
Sci Adv ; 6(31): eaba5345, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32832682

RESUMEN

Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development. Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases. Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type-specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues.

5.
Aging Cell ; 18(6): e13044, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560167

RESUMEN

Neuronal activity regulates cognition and neural stem cell (NSC) function. The molecular pathways limiting neuronal activity during aging remain largely unknown. In this work, we show that p38MAPK activity increases in neurons with age. By using mice expressing p38α-lox and CamkII-Cre alleles (p38α∆-N), we demonstrate that genetic deletion of p38α in neurons suffices to reduce age-associated elevation of p38MAPK activity, neuronal loss and cognitive decline. Moreover, aged p38α∆-N mice present elevated numbers of NSCs in the hippocampus and the subventricular zone. These results reveal novel roles for neuronal p38MAPK in age-associated NSC exhaustion and cognitive decline.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Animales , Disfunción Cognitiva/patología , Ratones , Células-Madre Neurales/patología
6.
J Neurochem ; 112(6): 1574-83, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20067579

RESUMEN

Phospholipases A(2) (PLA(2)) participate in neuronal death signalling pathways because of their ability to release lipid mediators, although the contribution of each isoform and mechanism of neurotoxicity are still elusive. Using a novel fluorogenic method to assess changes in a PLA(2) activity by flow cytometry, here we show that the group IIA secretory phospholipase A(2) isoform (GIIA) was specifically activated in cortical neurons following stimulation of N-methyl-d-aspartate glutamate receptor subtype (NMDAR). For activation, GIIA required Ca(2+) and reactive oxygen/nitrogen species, and inhibition of its activity fully prevented NMDAR-mediated neuronal apoptotic death. Superoxide, nitric oxide or peroxynitrite donors stimulated GIIA activity, which mediated neuronal death. Intriguingly, we also found that GIIA activity induced mitochondrial superoxide production after NMDAR stimulation. These results reveal a novel role for GIIA in excitotoxicity both as target and producer of superoxide in a positive-loop of activation that may contribute to the propagation of neurodegeneration.


Asunto(s)
Apoptosis/fisiología , Corteza Cerebral/citología , Fosfolipasas A2 Grupo II/metabolismo , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Anexina A5/metabolismo , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Citometría de Flujo/métodos , Ácido Glutámico/farmacología , Fosfolipasas A2 Grupo II/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Molsidomina/análogos & derivados , Molsidomina/farmacología , Neuronas/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Compuestos Nitrosos/farmacología , Embarazo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Xantina/farmacología , Xantina Oxidasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA