Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 12(1): 278, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28423864

RESUMEN

Nano-hydroxyapatite and its modification, hydroxyapatite with the excess of phosphorus (P-HAP) and hydroxyapatite with the carbon ions built into the structure (C-HAP), were prepared by the wet method. They were studied by means of XRD, accelerated surface area and porosimetry (ASAP), and SEM. The size of crystallites computed using the Scherrer method was nano-hydroxyapatite (HAP) = 20 nm; P-HAP-impossible to determine; C-HAP = 22 nm; nano-HAP/U(VI) = 13.7 nm; P-HAP/U(VI)-impossible to determine, C-HAP/U(VI) = 11 nm. There were determined basic parameters characterizing the double electrical layer at the nano-HAP/electrolyte and P-HAP/electrolyte, C-HAP/electrolyte inter faces: density of the surface charge and zeta potential. The adsorption properties of nano-HAP sorbent in relation to U(VI) ions were studied by the batch technique. The adsorption processes were rapid in the first 60 min and reached the equilibrium within approximately 120 min (for P-HAP) and 300 min (for C-HAP and nano-HAP). The adsorption process fitted well with the pseudo-second-order kinetics. The Freundlich, Langmuir-Freundlich, and Dubinin-Radushkevich models of isotherms were examined for their ability to the equilibrium sorption data. The maximum adsorption capabilities (q m ) were 7.75 g/g for P-HAP, 1.77 g/g for C-HAP, and 0.8 g/g for HAP at 293 K.

2.
Nanoscale Res Lett ; 11(1): 290, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27295258

RESUMEN

The method of a chemical assembly of the surface polymeric layer with high contents of the modifying agent was developed. Powders of nanodispersed silica with chemisorbed polymethylphenylsiloxane (PMPS) were synthesized by solvent-free chemical assembly technique with a dimethyl carbonate (DMC) as scission agent. Samples were characterized using FTIR spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis (CHN analysis). Coating microstructure, morphology, and hydrophilic-hydrophobic properties of nanoparticles were estimated. The results indicate a significant effect of the PMPS/DMC ratio at each modification stage on hydrophobic properties of modified silicas. Modification with a similar composition of the PMPS/DMC mixture, even with different polymer amount at each stage, provides the worst hydrophobicity. Results suggest that the highest hydrophobicity (contact angle θ = 135°-140°) is achieved in the case when silica modified with the PMPS/DMC mixture using multistage approach that providing a formation of the monomolecular layer of polysiloxane at the first modification step. The characteristics of surface structure were interpreted in terms of density of polymer-silica bonds at the interfaces that, usually, are reduced for modified surfaces, in a coupling with conformation model that accented the shape of chains (arch- and console-like) adsorbed on solid surfaces.

3.
Nanoscale Res Lett ; 11(1): 206, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27090657

RESUMEN

Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

4.
Nanoscale Res Lett ; 11(1): 166, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27009533

RESUMEN

Electrostatic stabilization is reduced in its efficiency in an electrolyte-containing environment. The effect of electrolyte concentration is mostly described as negative factor for dispersion stabilization. Usually, zeta potential and physical stability decrease at increasing electrolyte concentration. The purpose of the present study was to measure the surface properties of nanotubes in aqueous solution of monovalent electrolytes at different concentration. Characteristics such as size distribution, surface chemistry, surface charge, and dispersability in aqueous phase have been identified. Hydrodynamic size and zeta potential in aqueous multiwalled carbon nanotube (MWCNT) suspensions were determined at different pH with the desired concentrations of electrolyte of the cationic group (NaCl, KCl, CsCl) and the anionic group (NaClO4). The correlations between the response of the surface functionality of pristine and oxidized multiwalled carbon nanotubes and electrical double layer (EDL) forming at different ionic environments in the vicinity of a nanotube surface were determined. The nanotube dispersion stabilization was found to be more affected by ion size and pH medium then electrolyte concentration. The data obtained confirms the predominant role of surface reactions. The most stable dispersion of nanotubes was achieved in KCl electrolyte solution at less negative charge of the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...