Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (196)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37335116

RESUMEN

Mitochondrial dysfunction, or functional alteration, is found in many diseases and conditions, including neurodegenerative and musculoskeletal disorders, cancer, and normal aging. Here, an approach is described to assess mitochondrial function in living yeast cells at cellular and subcellular resolutions using a genetically encoded, minimally invasive, ratiometric biosensor. The biosensor, mitochondria-targeted HyPer7 (mtHyPer7), detects hydrogen peroxide (H2O2) in mitochondria. It consists of a mitochondrial signal sequence fused to a circularly permuted fluorescent protein and the H2O2-responsive domain of a bacterial OxyR protein. The biosensor is generated and integrated into the yeast genome using a CRISPR-Cas9 marker-free system, for more consistent expression compared to plasmid-borne constructs. mtHyPer7 is quantitatively targeted to mitochondria, has no detectable effect on yeast growth rate or mitochondrial morphology, and provides a quantitative readout for mitochondrial H2O2 under normal growth conditions and upon exposure to oxidative stress. This protocol explains how to optimize imaging conditions using a spinning-disk confocal microscope system and perform quantitative analysis using freely available software. These tools make it possible to collect rich spatiotemporal information on mitochondria both within cells and among cells in a population. Moreover, the workflow described here can be used to validate other biosensors.


Asunto(s)
Técnicas Biosensibles , Peróxidos , Peróxidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Proteínas Bacterianas/metabolismo , Técnicas Biosensibles/métodos
2.
Nat Commun ; 13(1): 2706, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577788

RESUMEN

In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1).


Asunto(s)
Citoesqueleto de Actina , Longevidad , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Longevidad/genética , Mitocondrias/metabolismo , Nutrientes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Front Cell Dev Biol ; 10: 852021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281095

RESUMEN

Lipid droplets (LDs) have emerged not just as storage sites for lipids but as central regulators of metabolism and organelle quality control. These critical functions are achieved, in part, at membrane contact sites (MCS) between LDs and other organelles. MCS are sites of transfer of cellular constituents to or from LDs for energy mobilization in response to nutrient limitations, as well as LD biogenesis, expansion and autophagy. Here, we describe recent findings on the mechanisms underlying the formation and function of MCS between LDs and mitochondria, ER and lysosomes/vacuoles and the role of the cytoskeleton in promoting LD MCS through its function in LD movement and distribution in response to environmental cues.

4.
Methods Mol Biol ; 2364: 53-80, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34542848

RESUMEN

Although budding yeast, Saccharomyces cerevisiae, is widely used as a model organism in biological research, studying cell biology in yeast was hindered due to its small size, rounded morphology, and cell wall. However, with improved techniques, researchers can acquire high-resolution images and carry out rapid multidimensional analysis of a yeast cell. As a result, imaging in yeast has emerged as an important tool to study cytoskeletal organization, function, and dynamics. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in live yeast cells.


Asunto(s)
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , División Celular , Proteínas de Saccharomyces cerevisiae
5.
Methods Mol Biol ; 2364: 81-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34542849

RESUMEN

Budding yeast, Saccharomyces cerevisiae, is an appealing model organism to study the organization and function of the actin cytoskeleton. With the advent of techniques to perform high-resolution, multidimensional analysis of the yeast cell, imaging of yeast has emerged as an important tool for research on the cytoskeleton. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in fixed yeast cells with wide-field and super-resolution fluorescence microscopy.


Asunto(s)
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , Citoesqueleto , Microscopía Fluorescente
6.
Autophagy ; 17(9): 2363-2383, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33021864

RESUMEN

Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Autofagia , Gotas Lipídicas/metabolismo , Microautofagia , Proteínas de Complejo Poro Nuclear/metabolismo , Proteostasis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Vacuolas/metabolismo
7.
Mol Biol Cell ; 30(24): 2943-2952, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31599702

RESUMEN

Loss of mitochondrial DNA (mtDNA) results in loss of mitochondrial respiratory activity, checkpoint-regulated inhibition of cell cycle progression, defects in growth, and nuclear genome instability. However, after several generations, yeast cells can adapt to the loss of mtDNA. During this adaptation, rho0 cells, which have no mtDNA, exhibit increased growth rates and nuclear genome stabilization. Here, we report that an immediate response to loss of mtDNA is a decrease in replicative lifespan (RLS). Moreover, we find that adapted rho0 cells bypass the mtDNA inheritance checkpoint, exhibit increased mitochondrial function, and undergo an increase in RLS as they adapt to the loss of mtDNA. Transcriptome analysis reveals that metabolic reprogramming to compensate for defects in mitochondrial function is an early event during adaptation and that up-regulation of stress response genes occurs later in the adaptation process. We also find that specific subtelomeric genes are silenced during adaptation to loss of mtDNA. Moreover, we find that deletion of SIR3, a subtelomeric gene silencing protein, inhibits silencing of subtelomeric genes associated with adaptation to loss of mtDNA, as well as adaptation-associated increases in mitochondrial function and RLS extension.


Asunto(s)
Proliferación Celular/genética , Senescencia Celular/fisiología , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Ciclo Celular/genética , División Celular/genética , Senescencia Celular/genética , Replicación del ADN/genética , ADN Mitocondrial/fisiología , Inestabilidad Genómica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
8.
PLoS One ; 13(4): e0196632, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29698455

RESUMEN

Isolated mitochondria are widely used to study the function of the organelle. Typically, mitochondria are prepared using differential centrifugation alone or in conjunction with density gradient ultracentrifugation. However, mitochondria isolated using differential centrifugation contain membrane or organelle contaminants, and further purification of crude mitochondria by density gradient ultracentrifugation requires large amounts of starting material, and is time-consuming. Mitochondria have also been isolated by irreversible binding to antibody-coated magnetic beads. We developed a method to prepare mitochondria from budding yeast that overcomes many of the limitations of other methods. Mitochondria are tagged by insertion of 6 histidines (6xHis) into the TOM70 (Translocase of outer membrane 70) gene at its chromosomal locus, isolated using Ni-NTA (nickel (II) nitrilotriacetic acid) paramagnetic beads and released from the magnetic beads by washing with imidazole. Mitochondria prepared using this method contain fewer contaminants, and are similar in ultrastructure as well as protein import and cytochrome c oxidase complex activity compared to mitochondria isolated by differential centrifugation. Moreover, this isolation method is amenable to small samples, faster than purification by differential and density gradient centrifugation, and more cost-effective than purification using antibody-coated magnetic beads. Importantly, this method can be applied to any cell type where the genetic modification can be introduced by CRISPR or other methods.


Asunto(s)
Cromatografía de Afinidad/métodos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Complejo IV de Transporte de Electrones/metabolismo , Histidina/genética , Histidina/metabolismo , Magnetismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Front Cell Dev Biol ; 5: 120, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29359129

RESUMEN

Tethers that link mitochondria to other organelles are critical for lipid and calcium transport as well as mitochondrial genome replication and fission of the organelle. Here, we review recent advances in the characterization of interorganellar mitochondrial tethers in the budding yeast, Saccharomyces cerevisiae. We specifically focus on evidence for a role for mitochondrial tethers that anchor mitochondria to specific regions within yeast cells. These tethering events contribute to two processes that are critical for normal replicative lifespan: inheritance of fitter mitochondria by daughter cells, and retention of a small pool of higher-functioning mitochondria in mother cells. Since asymmetric inheritance of mitochondria also occurs in human mammary stem-like cells, it is possible that mechanisms underlying mitochondrial segregation in yeast also operate in other cell types.

10.
Mol Biol Cell ; 27(5): 776-87, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26764088

RESUMEN

Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Saccharomyces cerevisiae/citología , ADN Mitocondrial/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Fotoblanqueo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Methods Mol Biol ; 1365: 63-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26498779

RESUMEN

The budding yeast Saccharomyces cerevisiae is widely used as a model system to study the organization and function of the cytoskeleton. In the past, its small size, rounded shape, and rigid cell wall created obstacles to explore the cell biology of this model eukaryote. It is now possible to acquire and analyze high-resolution and super-resolution multidimensional images of the yeast cell. As a result, imaging of yeast has emerged as an important tool in eukaryotic cell biology. This chapter describes labeling methods and optical approaches for visualizing the cytoskeleton and interactions of the actin cytoskeleton with mitochondria in fixed yeast cells using wide-field and super-resolution fluorescence microscopy.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/citología , Adhesión Celular/efectos de los fármacos , Núcleo Celular/genética , Pared Celular/metabolismo , ADN Mitocondrial/metabolismo , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/metabolismo , Hidrolasas/metabolismo , Faloidina/metabolismo , Polilisina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Esferoplastos/citología , Coloración y Etiquetado
12.
Methods Mol Biol ; 1365: 25-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26498778

RESUMEN

Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Mitocondrias/metabolismo , Imagen Molecular/métodos , Saccharomycetales/citología , Acetatos/farmacología , Cromosomas Fúngicos/genética , Colorantes/metabolismo , Sitios Genéticos/genética , Vectores Genéticos/genética , Integrasas/metabolismo , Movimiento , Imagen Óptica , Reacción en Cadena de la Polimerasa , Saccharomycetales/efectos de los fármacos , Saccharomycetales/genética , Análisis de Secuencia , Transformación Genética/efectos de los fármacos
13.
FEMS Yeast Res ; 14(8): 1133-46, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25263578

RESUMEN

Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates.


Asunto(s)
División Celular Asimétrica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Transporte Biológico , Orgánulos/metabolismo
14.
Trends Cell Biol ; 24(1): 53-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23932848

RESUMEN

Eukaryotic cells compartmentalize their biochemical processes within organelles, which have specific functions that must be maintained for overall cellular health. As the site of aerobic energy mobilization and essential biosynthetic activities, mitochondria are critical for cell survival and proliferation. Here, we describe mechanisms to control the quality and quantity of mitochondria within cells with an emphasis on findings from the budding yeast Saccharomyces cerevisiae. We also describe how mitochondrial quality and quantity control systems that operate during cell division affect lifespan and cell cycle progression.


Asunto(s)
Mitocondrias/fisiología , Saccharomyces cerevisiae/citología , Animales , División Celular Asimétrica , Transporte Biológico , Puntos de Control del Ciclo Celular , Citoesqueleto/fisiología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/fisiología
15.
Curr Biol ; 23(23): 2417-22, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24268413

RESUMEN

Actin cables of budding yeast are bundles of F-actin that extend from the bud tip or neck to the mother cell tip, serve as tracks for bidirectional cargo transport, and undergo continuous movement from buds toward mother cells [1]. This movement, retrograde actin cable flow (RACF), is similar to retrograde actin flow in lamellipodia, growth cones, immunological synapses, dendritic spines, and filopodia [2-5]. In all cases, actin flow is driven by the push of actin polymerization and assembly at the cell cortex, and myosin-driven pulling forces deeper within the cell [6-10]. Therefore, for movement and inheritance from mothers to buds, mitochondria must "swim upstream" against the opposing force of RACF [11]. We find that increasing RACF rates results in increased fitness of mitochondria inherited by buds and that the increase in mitochondrial fitness leads to extended replicative lifespan and increased cellular healthspan. The sirtuin SIR2 is required for normal RACF and mitochondrial fitness, and increasing RACF rates in sir2Δ cells increases mitochondrial fitness and cellular healthspan but does not affect replicative lifespan. These studies support the model that RACF serves as a filter for segregation of fit from less-fit mitochondria during inheritance, which controls cellular lifespan and healthspan. They also support a role for Sir2p in these processes.


Asunto(s)
Envejecimiento/genética , División Celular Asimétrica , Mitocondrias/patología , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Actinas/genética , Transporte Biológico , Linaje de la Célula , Supervivencia Celular/genética , Citocinesis , Eliminación de Gen , Mitocondrias/fisiología , Cadenas Pesadas de Miosina/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/biosíntesis , Sirtuina 2/biosíntesis , Tropomiosina/genética
16.
J Cell Biol ; 198(5): 793-8, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22927468

RESUMEN

The Chk2-mediated deoxyribonucleic acid (DNA) damage checkpoint pathway is important for mitochondrial DNA (mtDNA) maintenance. We show in this paper that mtDNA itself affects cell cycle progression. Saccharomyces cerevisiae rho(0) cells, which lack mtDNA, were defective in G1- to S-phase progression. Deletion of subunit Va of cytochrome c oxidase, inhibition of F(1)F(0) adenosine triphosphatase, or replacement of all mtDNA-encoded genes with noncoding DNA did not affect G1- to S-phase progression. Thus, the cell cycle progression defect in rho(0) cells is caused by loss of DNA within mitochondria and not loss of respiratory activity or mtDNA-encoded genes. Rad53p, the yeast Chk2 homologue, was required for inhibition of G1- to S-phase progression in rho(0) cells. Pif1p, a DNA helicase and Rad53p target, underwent Rad53p-dependent phosphorylation in rho(0) cells. Thus, loss of mtDNA activated an established checkpoint kinase that inhibited G1- to S-phase progression. These findings support the existence of a Rad53p-regulated checkpoint that regulates G1- to S-phase progression in response to loss of mtDNA.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Mitocondrial/genética , Fase G1/genética , Genes cdc , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Curr Biol ; 21(23): 1994-9, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22119524

RESUMEN

Mitochondria accumulate at neuronal and immunological synapses and yeast bud tips and associate with the ER during phospholipid biosynthesis, calcium homeostasis, and mitochondrial fission. Here we show that mitochondria are associated with cortical ER (cER) sheets underlying the plasma membrane in the bud tip and confirm that a deletion in YPT11, which inhibits cER accumulation in the bud tip, also inhibits bud tip anchorage of mitochondria. Time-lapse imaging reveals that mitochondria are anchored at specific sites in the bud tip. Mmr1p, a member of the DSL1 family of tethering proteins, localizes to punctate structures on opposing surfaces of mitochondria and cER sheets underlying the bud tip and is recovered with isolated mitochondria and ER. Deletion of MMR1 impairs bud tip anchorage of mitochondria without affecting mitochondrial velocity or cER distribution. Deletion of the phosphatase PTC1 results in increased Mmr1p phosphorylation, mislocalization of Mmr1p, defects in association of Mmr1p with mitochondria and ER, and defects in bud tip anchorage of mitochondria. These findings indicate that Mmr1p contributes to mitochondrial inheritance as a mediator of anchorage of mitochondria to cER sheets in the yeast bud tip and that Ptc1p regulates Mmr1p phosphorylation, localization, and function.


Asunto(s)
Citocinesis/fisiología , Retículo Endoplásmico/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/crecimiento & desarrollo , Proteínas de Unión al GTP rab/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Eliminación de Secuencia/genética , Imagen de Lapso de Tiempo , Proteínas de Unión al GTP rab/genética
18.
Aging Cell ; 10(5): 885-95, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21726403

RESUMEN

Fluorescence loss in photobleaching experiments and analysis of mitochondrial function using superoxide and redox potential biosensors revealed that mitochondria within individual yeast cells are physically and functionally distinct. Mitochondria that are retained in mother cells during yeast cell division have a significantly more oxidizing redox potential and higher superoxide levels compared to mitochondria in buds. Retention of mitochondria with more oxidizing redox potential in mother cells occurs to the same extent in young and older cells and can account for the age-associated decline in total cellular mitochondrial redox potential in yeast as they age from 0 to 5 generations. Deletion of Mmr1p, a member of the DSL1 family of tethering proteins that localizes to mitochondria at the bud tip and is required for normal mitochondrial inheritance, produces defects in mitochondrial quality control and heterogeneity in replicative lifespan (RLS). Long-lived mmr1Δ cells exhibit prolonged RLS, reduced mean generation times, more reducing mitochondrial redox potential and lower mitochondrial superoxide levels compared to wild-type cells. Short-lived mmr1Δ cells exhibit the opposite phenotypes. Moreover, short-lived cells give rise exclusively to short-lived cells, while the majority of daughters of long-lived cells are long lived. These findings support the model that the mitochondrial inheritance machinery promotes retention of lower-functioning mitochondria in mother cells and that this process contributes to both mother-daughter age asymmetry and age-associated declines in cellular fitness.


Asunto(s)
Mitocondrias/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , División Celular , Fluorescencia , Genes Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Oxidación-Reducción , Fotoblanqueo , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Superóxidos/metabolismo , Factores de Tiempo
19.
Curr Biol ; 19(20): 1730-5, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19818621

RESUMEN

Mitochondrial inheritance, the transfer of mitochondria from mother to daughter cell during cell division, is essential for daughter cell viability. The mitochore, a mitochondrial protein complex containing Mdm10p, Mdm12p, and Mmm1p, is required for mitochondrial motility leading to inheritance in budding yeast. We observe a defect in cytokinesis in mitochore mutants and another mutant (mmr1Delta gem1Delta) with impaired mitochondrial inheritance. This defect is not observed in yeast that have no mitochondrial DNA or defects in mitochondrial protein import or assembly of beta-barrel proteins in the mitochondrial outer membrane. Deletion of MDM10 inhibits contractile-ring closure, but does not inhibit contractile-ring assembly, localization of a chromosomal passenger protein to the spindle during early anaphase, spindle alignment, nucleolar segregation, or nuclear migration during anaphase. Release of the mitotic exit network (MEN) component, Cdc14p, from the nucleolus during anaphase is delayed in mdm10Delta cells. Finally, hyperactivation of the MEN by deletion of BUB2 restores defects in cytokinesis in mdm10Delta and mmr1Delta gem1Delta cells and reduces the fidelity of mitochondrial segregation between mother and daughter cells in wild-type and mdm10Delta cells. Our studies identify a novel MEN-linked regulatory system that inhibits cytokinesis in response to defects in mitochondrial inheritance in budding yeast.


Asunto(s)
Citocinesis/fisiología , Mitocondrias/fisiología , Mitosis/fisiología , Saccharomyces cerevisiae/citología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Eliminación de Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
20.
Methods Mol Biol ; 586: 171-84, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19768430

RESUMEN

The budding yeast Saccharomyces cerevisiae has many advantages as a model system, but until recently, high-resolution microscopy was not often attempted in this organism. Its small size, rounded shape, and rigid cell wall were obstacles to exploring the cell biology of this model eukaryote. However, it is now feasible for laboratories to acquire and analyze high-resolution multidimensional images of yeast cell biology. As a result, imaging of yeast has emerged as an important tool in eukaryotic cell biology. This chapter describes labeling methods and optical approaches for visualizing the cytoskeleton and interactions of the actin cytoskeleton with mitochondria in fixed yeast cells using fluorescence microscopy.


Asunto(s)
Citoesqueleto/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Biomarcadores/metabolismo , Colorantes Fluorescentes/metabolismo , Microtúbulos/metabolismo , Faloidina/metabolismo , Rodaminas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA