Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 5: 1176665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313214

RESUMEN

Introduction: Wistar Han rats are a preferred strain of rodents for general toxicology and safety pharmacology studies in drug development. In some of these studies, visual functional tests that assess for retinal toxicity are included as an additional endpoint. Although the influence of gender on human retinal function has been documented for more than 6 decades, preclinically it is still uncertain if there are differences in retinal function between naïve male and female Wistar Han rats. Methods: In this study, sex-related differences in the retinal function were quantified by analyzing electroretinography (ERG) in 7-9-week-old (n = 52 males and 51 females) and 21-23-week-old Wistar Han rats (n = 48 males and 51 females). Optokinetic tracking response, brainstem auditory evoked potential, ultrasonic vocalization and histology were tested and evaluated in a subset of animals to investigate the potential compensation mechanisms of spontaneous blindness. Results/Discussion: Absence of scotopic and photopic ERG responses was found in 13% of 7-9-week-old (7/52) and 19% of 21-23-week-old males (9/48), but none of female rats (0/51). The averaged amplitudes of rod- and cone-mediated ERG b-wave responses obtained from males were significantly smaller than the amplitudes of the same responses from age-matched females (-43% and -26%, respectively) at 7-9 weeks of age. There was no difference in the retinal and brain morphology, brainstem auditory responses, or ultrasonic vocalizations between the animals with normal and abnormal ERGs at 21-23 weeks of age. In summary, male Wistar Han rats had altered retinal responses, including a complete lack of responses to test flash stimuli (i.e., blindness), when compared with female rats at 7-9 and 21-23 weeks of age. Therefore, sex differences should be considered when using Wistar Han rats in toxicity and safety pharmacology studies with regards to data interpretation of retinal functional assessments.

2.
J Toxicol Sci ; 46(2): 57-68, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33536390

RESUMEN

The number of gene therapies in development continues to increase, as they represent a novel method to treat, and potentially cure, many diseases. Gene therapies can be conducted with an in vivo or ex vivo approach, to cause gene augmentation, gene suppression, or genomic editing. Adeno-associated viruses are commonly used to deliver gene therapies, but their use is associated with several manufacturing, nonclinical and clinical challenges. As these challenges emerge, regulatory agency expectations continue to evolve. Following administration of rAAV-based gene therapies, nonclinical toxicities may occur, which includes immunogenicity, hepatotoxicity, neurotoxicity, and the potential risks for insertional mutagenesis and subsequent tumorgenicity. The mechanism for these findings and translation into the clinical setting are unclear at this time but have influenced the nonclinical studies that regulatory agencies are increasingly requesting to support clinical trials and marketing authorizations. These evolving regulatory expectations and toxicities, as well as future nonclinical considerations, are discussed herein.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Terapia Genética/tendencias , Vectores Genéticos , Carcinogénesis , Terapia Genética/efectos adversos , Vectores Genéticos/toxicidad , Humanos , Mutagénesis
3.
Mol Ther Methods Clin Dev ; 19: 89-98, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33024793

RESUMEN

Nonclinical development strategies for gene therapies are unique from other modalities. The European Federation of Pharmaceutical Industries and Associates (EFPIA) Gene Therapy Working Group surveyed EFPIA member and nonmember pharmaceutical and biotechnology companies about their current practices for designing and implementing nonclinical toxicology studies to support the development of viral vector-delivered in vivo gene therapies. Compiled responses from 17 companies indicated that these studies had some variability in species selection, study-design elements, biodistribution, immunogenicity or genomic insertion assessments, safety pharmacology, and regulatory interactions. Although there was some consistency in general practice, there were examples of extreme case-by-case differences. The responses and variability are discussed herein. Key development challenges were also identified. Results from this survey emphasize the importance for harmonization of regulatory guidelines for the development of gene-therapy products, while still allowing for case-by-case flexibility in nonclinical toxicology studies. However, the appropriate timing for a harmonized guidance, particularly with a platform that continues to rapidly evolve, remains in question.

4.
Blood Coagul Fibrinolysis ; 31(1): 16-28, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31687988

RESUMEN

: A zymogen-like activated factor X variant (FXa) is being developed for treating acute bleeding conditions. Activated factor V is an essential cofactor to FXa for activating prothrombin to thrombin. Thrombi/emboli formation was observed microscopically in FXa toxicity studies in animals. The objective of this research was to evaluate candidate biomarkers for FXa-induced thrombi/emboli formation to inform safety monitoring and dose-escalation decisions in FXa clinical trials. Effects of intravenous FXa administration on platelets, fibrinogen, activated partial thromboplastin time (aPTT), prothrombin time (PT), D-dimer, tissue factor pathway inhibitor, thrombin : antithrombin complex, antithrombin, and factor V, and protein C (PC) activities were evaluated in mice, rats, and monkeys. Mice had endogenous factor V activity 10× that of monkeys and were overly sensitive to FXa-induced thrombi/emboli formation. In monkeys, decreases in fibrinogen and prolongation in aPTT and PT emerged as potential biomarkers for impending FXa-induced thrombi/emboli formation, based on association of changes with microscopically observable thrombi/emboli (0-97 thrombi/emboli per monkey). PC decreases, measured by a clot-based assay, were also observed. A similar reduction in PC activity, when measured by clot-based assay, was observed in a phase 1 clinical trial. However, an in-vitro experiment with human plasma spiked with increasing concentrations of FXa indicated dose-dependent FXa-induced interference with clot-based assays and no depletion of PC or S by FXa in non-clot-based assays. Nonclinical biomarker studies identified fibrinogen, aPTT and PT as potential biomarkers for monitoring the clinical safety of FXa. Results of clot-based assays with FXa treatment should be interpreted with caution.


Asunto(s)
Anticoagulantes/uso terapéutico , Biomarcadores/metabolismo , Pruebas de Coagulación Sanguínea/métodos , Factor Xa/uso terapéutico , Trombosis/tratamiento farmacológico , Animales , Anticoagulantes/farmacología , Factor Xa/farmacología , Haplorrinos , Humanos , Ratones , Ratas , Ratas Wistar
5.
Therap Adv Gastroenterol ; 12: 1756284819852535, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31223341

RESUMEN

The 'totality-of-the-evidence' biosimilarity concept requires that sufficient structural, functional, nonclinical, and clinical data are acquired in a stepwise manner, to demonstrate that no clinically meaningful differences in quality, safety, or efficacy are observed compared with the reference product. We describe the totality of the evidence for PF-06438179/GP1111 (PF-SZ-IFX; IXIFI™ [infliximab-qbtx]/Zessly®) that supported its approval as an infliximab (IFX) biosimilar for all eligible indications of reference IFX (ref-IFX; Remicade®) in Europe and in the US. Analytical similarity involving in vitro assays capable of distinguishing structural or functional differences between PF-SZ-IFX and ref-IFX formed a foundation for the biosimilarity exercise. Differences identified in N-glycosylation and charge heterogeneity were found not to impact the results in in vitro biological assays reflective of the pharmacology underlying the mechanisms of action (tumor necrosis factor binding, reverse signaling, antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity) of IFX across disease indications. Similarity was assessed in a comparative clinical pharmacokinetic study and in a clinical efficacy and safety study in patients with rheumatoid arthritis, where therapeutic equivalence between PF-SZ-IFX and ref-IFX provided confirmatory evidence of biosimilarity, and, when coupled with the analytical similarity already established, supported extrapolation to all eligible disease indications of ref-IFX.

6.
J Med Chem ; 61(13): 5704-5718, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29878763

RESUMEN

The optimization of a new class of small molecule PCSK9 mRNA translation inhibitors is described. The potency, physicochemical properties, and off-target pharmacology associated with the hit compound (1) were improved by changes to two regions of the molecule. The last step in the synthesis of the congested amide center was enabled by three different routes. Subtle structural changes yielded significant changes in pharmacology and off-target margins. These efforts led to the identification of 7l and 7n with overall profiles suitable for in vivo evaluation. In a 14-day toxicology study, 7l demonstrated an improved safety profile vs lead 7f. We hypothesize that the improved safety profile is related to diminished binding of 7l to nontranslating ribosomes and an apparent improvement in transcript selectivity due to the lower strength of 7l stalling of off-target proteins.


Asunto(s)
Inhibidores de PCSK9 , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Animales , Diseño de Fármacos , Masculino , Inhibidores de Proteasas/efectos adversos , Inhibidores de Proteasas/metabolismo , Ratas , Ratas Sprague-Dawley , Seguridad , Relación Estructura-Actividad
7.
Angew Chem Int Ed Engl ; 56(51): 16218-16222, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29073340

RESUMEN

Targeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver. Oral delivery of the poorly permeable zwitterions was achieved by prodrugs susceptible to cleavage by carboxylesterase 1. The synthesis of select tetrazole prodrugs was crucial. A cell-free in vitro translation assay containing human cell lysate and purified target mRNA fused to a reporter was used to identify active zwitterions. In vivo PCSK9 lowering by oral dosing of the candidate prodrug and quantification of the drug fraction delivered to the liver utilizing an oral positron emission tomography 18 F-isotopologue validated our liver-targeting approach.


Asunto(s)
Hígado/efectos de los fármacos , Inhibidores de PCSK9 , Proproteína Convertasa 9/biosíntesis , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/enzimología , Hígado/metabolismo , Estructura Molecular , Proproteína Convertasa 9/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
8.
Toxicol Appl Pharmacol ; 334: 100-109, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28893587

RESUMEN

The contribution of animal testing in drug development has been widely debated and challenged. An industry-wide nonclinical to clinical translational database was created to determine how safety assessments in animal models translate to First-In-Human clinical risk. The blinded database was composed of 182 molecules and contained animal toxicology data coupled with clinical observations from phase I human studies. Animal and clinical data were categorized by organ system and correlations determined. The 2×2 contingency table (true positive, false positive, true negative, false negative) was used for statistical analysis. Sensitivity was 48% with a 43% positive predictive value (PPV). The nonhuman primate had the strongest performance in predicting adverse effects, especially for gastrointestinal and nervous system categories. When the same target organ was identified in both the rodent and nonrodent, the PPV increased. Specificity was 84% with an 86% negative predictive value (NPV). The beagle dog had the strongest performance in predicting an absence of clinical adverse effects. If no target organ toxicity was observed in either test species, the NPV increased. While nonclinical studies can demonstrate great value in the PPV for certain species and organ categories, the NPV was the stronger predictive performance measure across test species and target organs indicating that an absence of toxicity in animal studies strongly predicts a similar outcome in the clinic. These results support the current regulatory paradigm of animal testing in supporting safe entry to clinical trials and provide context for emerging alternate models.


Asunto(s)
Bases de Datos Factuales , Investigación Biomédica Traslacional , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Modelos Animales , Medición de Riesgo
9.
Adv Ther ; 33(11): 1964-1982, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27585978

RESUMEN

INTRODUCTION: PF-06438179, a potential biosimilar to Remicade® (infliximab, Janssen Biotech, Inc.), is a chimeric mouse-human monoclonal antibody targeting human tumor necrosis factor alpha (TNF). METHODS: Analytical (small subset reported here) and nonclinical studies compared the structural, functional, and in vivo nonclinical similarity of PF-06438179 with Remicade sourced from the United States (infliximab-US) and/or European Union (infliximab-EU). RESULTS: The peptide map profiles were superimposable, and peptide masses were the same, indicating identical amino acid sequences. Data on post-translational modifications, biochemical properties, and biological function provided strong support for analytical similarity. Administration of a single intravenous (IV) dose (10 or 50 mg/kg) of PF-06438179 or infliximab-EU to male rats was well tolerated. There were no test article-related clinical signs or effects on body weight or food consumption. Systemic exposures [maximum drug concentration (C max) and area under the concentration-time curve (AUC)] in rats administered PF-06438179 or infliximab-EU were similar, with mean exposure ratio of PF-06438179 relative to infliximab-EU ranging from 0.88 to 1.16. No rats developed anti-drug antibodies. A 2-week IV toxicity study was conducted with once-weekly administration of 10 or 50 mg/kg of PF-06438179 to male and female rats. PF-06438179-related hyperplasia of sinusoidal cells occurred in the liver in rats administered 50 mg/kg, but was not adverse based on its minimal to mild severity. The no-observed adverse-effect level for PF-06438179 was 50 mg/kg. At this dose, C max was 1360 µg/mL and AUC at 168 h was 115,000 µg h/mL on day 8. CONCLUSIONS: The analytical and nonclinical studies have supported advancement of PF-06438179 into global comparative clinical trials. FUNDING: Pfizer Inc.


Asunto(s)
Biosimilares Farmacéuticos/farmacología , Infliximab/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Administración Intravenosa , Animales , Anticuerpos Monoclonales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Inmunosupresores/farmacología , Masculino , Ratas , Resultado del Tratamiento
10.
Sci Transl Med ; 8(353): 353ra112, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27559095

RESUMEN

Thrombosis is a major cause of morbidity and mortality. Current antithrombotic drugs are not ideal in that they must balance prevention of thrombosis against bleeding risk. Inhibition of coagulation factor XI (FXI) may offer an improvement over existing antithrombotic strategies by preventing some forms of thrombosis with lower bleeding risk. To permit exploration of this hypothesis in humans, we generated and characterized a series of human immunoglobulin Gs (IgGs) that blocked FXIa active-site function but did not bind FXI zymogen or other coagulation proteases. The most potent of these IgGs, C24 and DEF, inhibited clotting in whole human blood and prevented FeCl3-induced carotid artery occlusion in FXI-deficient mice reconstituted with human FXI and in thread-induced venous thrombosis in rabbits at clinically relevant doses. At doses substantially higher than those required for inhibition of intravascular thrombus formation in these models, DEF did not increase cuticle bleeding in rabbits or cause spontaneous bleeding in macaques over a 2-week study. Anticipating the desirability of a reversal agent, we also generated a human IgG that rapidly reversed DEF activity ex vivo in human plasma and in vivo in rabbits. Thus, an active site-directed FXIa-specific antibody can block thrombosis in animal models and, together with the reversal agent, may facilitate exploration of the roles of FXIa in human disease.


Asunto(s)
Factor XI/fisiología , Factor XIa/antagonistas & inhibidores , Factor XIa/inmunología , Hemostasis/fisiología , Inmunoglobulina G/metabolismo , Trombosis/sangre , Animales , Anticuerpos Bloqueadores/metabolismo , Anticuerpos Monoclonales/metabolismo , Especificidad de Anticuerpos , Humanos , Técnicas In Vitro , Cinética , Macaca fascicularis , Ratones , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA