Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38634280

RESUMEN

BACKGROUND: Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS: Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS: Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFß-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS: Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.

2.
Rheumatology (Oxford) ; 62(8): 2887-2897, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625523

RESUMEN

OBJECTIVES: How the local inflammatory environment regulates epigenetic changes in the context of inflammatory arthritis remains unclear. Here we assessed the transcriptional and active enhancer profile of monocytes derived from the inflamed joints of JIA patients, a model well-suited for studying inflammatory arthritis. METHODS: RNA sequencing and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) were used to analyse the transcriptional and epigenetic profile, respectively, of JIA synovial fluid-derived monocytes. RESULTS: Synovial-derived monocytes display an activated phenotype, which is regulated on the epigenetic level. IFN signalling-associated genes are increased and epigenetically altered in synovial monocytes, indicating a driving role for IFN in establishing the local inflammatory phenotype. Treatment of synovial monocytes with the Janus-associated kinase (JAK) inhibitor ruxolitinib, which inhibits IFN signalling, transformed the activated enhancer landscape and reduced disease-associated gene expression, thereby inhibiting the inflammatory phenotype. CONCLUSION: This study provides novel insights into epigenetic regulation of inflammatory arthritis patient-derived monocytes and highlights the therapeutic potential of epigenetic modulation for the treatment of inflammatory rheumatic diseases.


Asunto(s)
Artritis , Monocitos , Humanos , Monocitos/metabolismo , Epigénesis Genética , Artritis/metabolismo , Líquido Sinovial/metabolismo , Fenotipo
3.
Sci Rep ; 13(1): 1010, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653383

RESUMEN

Extracellular vesicles (EV) are a novel biomarker source for diagnosis and prognosis of cardiovascular disease. A protein comparison of plasma EVs in relation to blood plasma and atherosclerotic plaque has not been performed but would provide insight into the origin and content of biomarker sources and their association with atherosclerotic progression. Using samples of 88 carotid endarterectomy patients in the Athero-Express, 92 proteins (Olink Cardiovascular III panel) were measured in citrate plasma, plasma derived LDL-EVs and atherosclerotic plaque. Proteins were correlated between sources and were related to pre-operative stroke and 3-year major adverse cardiovascular events (MACE). Plasma and EV proteins correlated moderately on average, but with substantial variability. Both showed little correlation with plaque, suggesting that these circulating biomarkers may not originate from the latter. Plaque (n = 17) contained most differentially-expressed proteins in patients with stroke, opposed to EVs (n = 6) and plasma (n = 5). In contrast, EVs contained most differentially-expressed proteins for MACE (n = 21) compared to plasma (n = 9) and plaque (n = 1). EVs appear to provide additional information about severity and progression of systemic atherosclerosis than can be obtained from plasma or atherosclerotic plaque.


Asunto(s)
Aterosclerosis , Endarterectomía Carotidea , Vesículas Extracelulares , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Placa Aterosclerótica/metabolismo , Arterias Carótidas/metabolismo , Biomarcadores , Proteínas , Vesículas Extracelulares/metabolismo
4.
Elife ; 122023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688525

RESUMEN

Autoimmune inflammation is characterized by tissue infiltration and expansion of antigen-specific T cells. Although this inflammation is often limited to specific target tissues, it remains yet to be explored whether distinct affected sites are infiltrated with the same, persistent T cell clones. Here, we performed CyTOF analysis and T cell receptor (TCR) sequencing to study immune cell composition and (hyper-)expansion of circulating and joint-derived Tregs and non-Tregs in juvenile idiopathic arthritis (JIA). We studied different joints affected at the same time, as well as over the course of relapsing-remitting disease. We found that the composition and functional characteristics of immune infiltrates are strikingly similar between joints within one patient, and observed a strong overlap between dominant T cell clones, especially Treg, of which some could also be detected in circulation and persisted over the course of relapsing-remitting disease. Moreover, these T cell clones were characterized by a high degree of sequence similarity, indicating the presence of TCR clusters responding to the same antigens. These data suggest that in localized autoimmune disease, there is autoantigen-driven expansion of both Teffector and Treg clones that are highly persistent and are (re)circulating. These dominant clones might represent interesting therapeutic targets.


Asunto(s)
Artritis Juvenil , Humanos , Linfocitos T Reguladores , Inflamación , Receptores de Antígenos de Linfocitos T , Células Clonales
5.
Nat Cardiovasc Res ; 2(2): 112-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665903

RESUMEN

Atherosclerosis is a lipid-driven chronic inflammatory disease; however, whether it can be classified as an autoimmune disease remains unclear. In this study, we applied single-cell T cell receptor seqencing (scTCR-seq) on human carotid artery plaques and matched peripheral blood mononuclear cell samples to assess the extent of TCR clonality and antigen-specific activation within the various T cell subsets. We observed the highest degree of plaque-specific clonal expansion in effector CD4+ T cells, and these clonally expanded T cells expressed genes such as CD69, FOS and FOSB, indicative of recent TCR engagement, suggesting antigen-specific stimulation. CellChat analysis suggested multiple potential interactions of these effector CD4+ T cells with foam cells. Finally, we integrated a published scTCR-seq dataset of the autoimmune disease psoriatic arthritis, and we report various commonalities between the two diseases. In conclusion, our data suggest that atherosclerosis has an autoimmune compondent driven by autoreactive CD4+ T cells.

6.
Eur J Cancer ; 175: 311-325, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36182817

RESUMEN

iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival.


Asunto(s)
Neoplasias , Adolescente , Niño , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Oncología Médica , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión , Estudios Prospectivos , Secuenciación del Exoma
7.
Eur Heart J Open ; 2(1): oeab043, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35174364

RESUMEN

AIMS: Genome-wide association studies (GWASs) have discovered hundreds of common genetic variants for atherosclerotic disease and cardiovascular risk factors. The translation of susceptibility loci into biological mechanisms and targets for drug discovery remains challenging. Intersecting genetic and gene expression data has led to the identification of candidate genes. However, previously studied tissues are often non-diseased and heterogeneous in cell composition, hindering accurate candidate prioritization. Therefore, we analysed single-cell transcriptomics from atherosclerotic plaques for cell-type-specific expression to identify atherosclerosis-associated candidate gene-cell pairs. METHODS AND RESULTS: We applied gene-based analyses using GWAS summary statistics from 46 atherosclerotic and cardiovascular disease, risk factors, and other traits. We then intersected these candidates with single-cell RNA sequencing (scRNA-seq) data to identify genes specific for individual cell (sub)populations in atherosclerotic plaques. The coronary artery disease (CAD) loci demonstrated a prominent signal in plaque smooth muscle cells (SMCs) (SKI, KANK2, and SORT1) P-adj. = 0.0012, and endothelial cells (ECs) (SLC44A1, ATP2B1) P-adj. = 0.0011. Finally, we used liver-derived scRNA-seq data and showed hepatocyte-specific enrichment of genes involved in serum lipid levels. CONCLUSION: We discovered novel and known gene-cell pairs pointing to new biological mechanisms of atherosclerotic disease. We highlight that loci associated with CAD reveal prominent association levels in mainly plaque SMC and EC populations. We present an intuitive single-cell transcriptomics-driven workflow rooted in human large-scale genetic studies to identify putative candidate genes and affected cells associated with cardiovascular traits. Collectively, our workflow allows for the identification of cell-specific targets relevant for atherosclerosis and can be universally applied to other complex genetic diseases and traits.

8.
Nat Cardiovasc Res ; 1(12): 1140-1155, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37920851

RESUMEN

Histopathological studies have revealed key processes of atherosclerotic plaque thrombosis. However, the diversity and complexity of lesion types highlight the need for improved sub-phenotyping. Here we analyze the gene expression profiles of 654 advanced human carotid plaques. The unsupervised, transcriptome-driven clustering revealed five dominant plaque types. These plaque phenotypes were associated with clinical presentation and showed differences in cellular compositions. Validation in coronary segments showed that the molecular signature of these plaques was linked to coronary ischemia. One of the plaque types with the most severe clinical symptoms pointed to both inflammatory and fibrotic cell lineages. Further, we did a preliminary analysis of potential circulating biomarkers that mark the different plaques phenotypes. In conclusion, the definition of the plaque at risk for a thrombotic event can be fine-tuned by in-depth transcriptomic-based phenotyping. These differential plaque phenotypes prove clinically relevant for both carotid and coronary artery plaques and point to distinct underlying biology of symptomatic lesions.

9.
Front Immunol ; 13: 1101999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685500

RESUMEN

Introduction: Dendritic cells (DC) are crucial for initiating and shaping immune responses. So far, little is known about the functional specialization of human DC subsets in (local) inflammatory conditions. We profiled conventional (c)DC1, cDC2 and monocytes based on phenotype, transcriptome and function from a local inflammatory site, namely synovial fluid (SF) from patients suffering from a chronic inflammatory condition, Juvenile Idiopathic Arthritis (JIA) as well as patients with rheumatoid arthritis (RA). Methods: Paired PB and SF samples from 32 JIA and 4 RA patients were collected for mononuclear cell isolation. Flow cytometry was done for definition of antigen presenting cell (APC) subsets. Cell sorting was done on the FACSAria II or III. RNA sequencing was done on SF APC subsets. Proliferation assays were done on co-cultures after CD3 magnetic activated cell sorting (MACS). APC Toll-like receptor (TLR) stimulation was done using Pam3CSK4, Poly(I:C), LPS, CpG-A and R848. Cytokine production was measured by Luminex. Results: cDC1, a relatively small DC subset in blood, are strongly enriched in SF, and showed a quiescent immune signature without a clear inflammatory profile, low expression of pathogen recognition receptors (PRRs), chemokine and cytokine receptors, and poor induction of T cell proliferation and cytokine production, but selective production of IFNλ upon polyinosinic:polycytidylic acid exposure. In stark contrast, cDC2 and monocytes from the same environment, showed a pro-inflammatory transcriptional profile, high levels of (spontaneous) pro-inflammatory cytokine production, and strong induction of T cell proliferation and cytokine production, including IL-17. Although the cDC2 and monocytes showed an overlapping transcriptional core profile, there were clear differences in the transcriptional landscape and functional features, indicating that these cell types retain their lineage identity in chronic inflammatory conditions. Discussion: Our findings suggest that at the site of inflammation, there is specific functional programming of human DCs, especially cDC2. In contrast, the enriched cDC1 remain relatively quiescent and seemingly unchanged under inflammatory conditions, pointing to a potentially more regulatory role.


Asunto(s)
Artritis Juvenil , Artritis Reumatoide , Humanos , Líquido Sinovial , Células Dendríticas , Citocinas/metabolismo
10.
Front Cardiovasc Med ; 8: 693351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195238

RESUMEN

Aims: Low plasma testosterone levels have been shown to predict worse outcome in men with severe atherosclerotic disease. We hypothesized that a low plasma testosterone level affects disease risk through changes in gene expression in atherosclerotic plaques. Therefore, we studied plasma testosterone levels in relation to gene expression levels in atherosclerotic plaque tissue of men with advanced atherosclerotic disease. Methods: Plasma testosterone levels were measured in 203 men undergoing carotid endarterectomy. The corresponding atherosclerotic plaque tissue was used for RNA sequencing. First, we assessed how often the androgen receptor gene was expressed in the plaque. Second, correlations between plasma testosterone levels and pre-selected testosterone-sensitive genes were assessed. Finally, differences within the RNA expression profile of the plaque as a whole, characterized into gene regulatory networks and at individual gene level were assessed in relation to testosterone levels. Results: Testosterone plasma levels were low with a median of 11.6 nmol/L (IQR: 8.6-13.8). RNA-seq of the plaque resulted in reliable expression data for 18,850 genes to be analyzed. Within the RNA seq data, the androgen-receptor gene was expressed in 189 out of 203 (93%) atherosclerotic plaques of men undergoing carotid endarterectomy. The androgen receptor gene expression was not associated with testosterone plasma levels. There were no significant differences in gene expression of atherosclerotic plaques between different endogenous testosterone levels. This remained true for known testosterone-sensitive genes, the complete transcriptomic profile, male-specific gene co-expression modules as well as for individual genes. Conclusion: In men with severe atherosclerotic disease the androgen receptor is highly expressed in plaque tissue. However, plasma testosterone levels were neither associated with pre-selected testosterone sensitive genes, gene expression profiles nor gene regulatory networks in late-stage atherosclerotic plaques. The effect of testosterone on gene expression of the late-stage atherosclerotic plaque appears limited, suggesting that alternate mechanisms explain its effect on clinical outcomes.

11.
Front Cardiovasc Med ; 8: 658915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959646

RESUMEN

Background and Aims: Oncostatin M (OSM) signaling is implicated in atherosclerosis, however the mechanism remains unclear. We investigated the impact of common genetic variants in OSM and its receptors, OSMR and LIFR, on overall plaque vulnerability, plaque phenotype, intraplaque OSMR and LIFR expression, coronary artery calcification burden and cardiovascular disease susceptibility. Methods and Results: We queried Genotype-Tissue Expression data and found that rs13168867 (C allele) was associated with decreased OSMR expression and that rs10491509 (A allele) was associated with increased LIFR expression in arterial tissues. No variant was significantly associated with OSM expression. We associated these two variants with plaque characteristics from 1,443 genotyped carotid endarterectomy patients in the Athero-Express Biobank Study. After correction for multiple testing, rs13168867 was significantly associated with an increased overall plaque vulnerability (ß = 0.118 ± s.e. = 0.040, p = 3.00 × 10-3, C allele). Looking at individual plaque characteristics, rs13168867 showed strongest associations with intraplaque fat (ß = 0.248 ± s.e. = 0.088, p = 4.66 × 10-3, C allele) and collagen content (ß = -0.259 ± s.e. = 0.095, p = 6.22 × 10-3, C allele), but these associations were not significant after correction for multiple testing. rs13168867 was not associated with intraplaque OSMR expression. Neither was intraplaque OSMR expression associated with plaque vulnerability and no known OSMR eQTLs were associated with coronary artery calcification burden, or cardiovascular disease susceptibility. No associations were found for rs10491509 in the LIFR locus. Conclusions: Our study suggests that rs1316887 in the OSMR locus is associated with increased plaque vulnerability, but not with coronary calcification or cardiovascular disease risk. It remains unclear through which precise biological mechanisms OSM signaling exerts its effects on plaque morphology. However, the OSM-OSMR/LIFR pathway is unlikely to be causally involved in lifetime cardiovascular disease susceptibility.

12.
Sci Transl Med ; 13(584)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692130

RESUMEN

Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell-specific nanobiologics in apolipoprotein E-deficient (Apoe -/-) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages' inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments revealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of Psap -/- bone marrow to low-density lipoprotein receptor knockout (Ldlr -/-) mice led to a reduction in atherosclerosis development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and inflammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the development of atherosclerosis and identify prosaposin as a potential therapeutic target.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Saposinas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE
13.
Circ Res ; 127(12): 1552-1565, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33040646

RESUMEN

RATIONALE: Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Recent genome-wide association studies revealed 163 loci associated with CAD. However, the precise molecular mechanisms by which the majority of these loci increase CAD risk are not known. Vascular smooth muscle cells (VSMCs) are critical in the development of CAD. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. OBJECTIVE: To identify genetic variants associated with atherosclerosis-relevant phenotypes in VSMCs. METHODS AND RESULTS: We quantified 12 atherosclerosis-relevant phenotypes related to calcification, proliferation, and migration in VSMCs isolated from 151 multiethnic heart transplant donors. After genotyping and imputation, we performed association mapping using 6.3 million genetic variants. We demonstrated significant variations in calcification, proliferation, and migration. These phenotypes were not correlated with each other. We performed genome-wide association studies for 12 atherosclerosis-relevant phenotypes and identified 4 genome-wide significant loci associated with at least one VSMC phenotype. We overlapped the previously identified CAD loci with our data set and found nominally significant associations at 79 loci. One of them was the chromosome 1q41 locus, which harbors MIA3. The G allele of the lead risk single nucleotide polymorphism (SNP) rs67180937 was associated with lower VSMC MIA3 expression and lower proliferation. Lentivirus-mediated silencing of MIA3 (melanoma inhibitory activity protein 3) in VSMCs resulted in lower proliferation, consistent with human genetics findings. Furthermore, we observed a significant reduction of MIA3 protein in VSMCs in thin fibrous caps of late-stage atherosclerotic plaques compared to early fibroatheroma with thick and protective fibrous caps in mice and humans. CONCLUSIONS: Our data demonstrate that genetic variants have significant influences on VSMC function relevant to the development of atherosclerosis. Furthermore, high MIA3 expression may promote atheroprotective VSMC phenotypic transitions, including increased proliferation, which is essential in the formation or maintenance of a protective fibrous cap.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Variación Genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Aterosclerosis/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibrosis , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , Polimorfismo de Nucleótido Simple
14.
Circ Res ; 127(11): 1437-1455, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32981416

RESUMEN

RATIONALE: Atherosclerotic lesions are known for their cellular heterogeneity, yet the molecular complexity within the cells of human plaques has not been fully assessed. OBJECTIVE: Using single-cell transcriptomics and chromatin accessibility, we gained a better understanding of the pathophysiology underlying human atherosclerosis. METHODS AND RESULTS: We performed single-cell RNA and single-cell ATAC sequencing on human carotid atherosclerotic plaques to define the cells at play and determine their transcriptomic and epigenomic characteristics. We identified 14 distinct cell populations including endothelial cells, smooth muscle cells, mast cells, B cells, myeloid cells, and T cells and identified multiple cellular activation states and suggested cellular interconversions. Within the endothelial cell population, we defined subsets with angiogenic capacity plus clear signs of endothelial to mesenchymal transition. CD4+ and CD8+ T cells showed activation-based subclasses, each with a gradual decline from a cytotoxic to a more quiescent phenotype. Myeloid cells included 2 populations of proinflammatory macrophages showing IL (interleukin) 1B or TNF (tumor necrosis factor) expression as well as a foam cell-like population expressing TREM2 (triggering receptor expressed on myeloid cells 2) and displaying a fibrosis-promoting phenotype. ATACseq data identified specific transcription factors associated with the myeloid subpopulation and T cell cytokine profiles underlying mutual activation between both cell types. Finally, cardiovascular disease susceptibility genes identified using public genome-wide association studies data were particularly enriched in lesional macrophages, endothelial, and smooth muscle cells. CONCLUSIONS: This study provides a transcriptome-based cellular landscape of human atherosclerotic plaques and highlights cellular plasticity and intercellular communication at the site of disease. This detailed definition of cell communities at play in atherosclerosis will facilitate cell-based mapping of novel interventional targets with direct functional relevance for the treatment of human disease.


Asunto(s)
Enfermedades de las Arterias Carótidas/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Linfocitos/metabolismo , Células Mieloides/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Análisis de la Célula Individual , Transcriptoma , Anciano , Anciano de 80 o más Años , Animales , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Transdiferenciación Celular , Secuenciación de Inmunoprecipitación de Cromatina , Bases de Datos Genéticas , Células Endoteliales/patología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Linfocitos/patología , Masculino , Ratones , Persona de Mediana Edad , Células Mieloides/patología , Miocitos del Músculo Liso/patología , Fenotipo , RNA-Seq
15.
J Infect Dis ; 211(8): 1268-78, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25362194

RESUMEN

BACKGROUND: Based on their localization, Kupffer cells (KCs) likely interact with hepatitis B virus (HBV). However, the role of KCs in inducing immunity toward HBV is poorly understood. Therefore, the interaction of hepatitis B surface antigen (HBsAg) and KCs, and possible functional consequences, were assessed. METHODS: KCs in liver tissue from patients with chronic HBV were analyzed for presence of HBsAg and their phenotype, and compared with KCs in control liver tissue. Liver graft perfusate-derived KCs and in vitro-generated monocyte-derived macrophages were investigated for functional interaction with patient-derived HBsAg. RESULTS: Intrahepatic KCs were HBsAg positive and more activated than those from control livers. KCs internalized HBsAg in vitro, which did not change their phenotype, but strongly induced proinflammatory cytokine production. Additionally, monocyte-derived macrophages also interacted with HBsAg, leading to activation and cytokine production. Furthermore, HBsAg-exposed macrophages and KC activated natural killer (NK) cells, resulting in increased CD69 expression and interferon-γ production. CONCLUSIONS: KCs directly interact with HBsAg in vivo and in vitro. HBsAg-induced cytokine production by KCs and monocyte-derived macrophages and subsequent NK cell activation may be an early event in viral containment and may support induction of HBV-specific immunity upon HBV infection, but may also contribute to liver pathology.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Inflamación/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Macrófagos del Hígado/inmunología , Adulto , Células Dendríticas/inmunología , Humanos , Técnicas In Vitro/métodos , Hígado/inmunología , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Masculino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/inmunología , Adulto Joven
16.
Eur J Immunol ; 45(1): 250-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25316442

RESUMEN

With increasing interest in alternative options to interferon-alpha-based treatments, IFN-λ has shown therapeutic promise in a variety of diseases. Although the antiviral activity of IFN-λ has been extensively studied, there is limited knowledge regarding the immunological functions of IFN-λ and how these differ from those of other classes of IFNs. In this study, we investigated the effects of IFN-λ on primary human NK cells, both in a direct and indirect capacity. We demonstrate that in contrast to interferon-alpha, IFN-λ is unable to directly stimulate NK cells, due to the absence of IFN-λ receptor chain 1 (IFN-λR1) on NK cells. However, IFN-λ, in combination with TLR4 challenge, is able to induce the production of select members of the IL-12 family of cytokines in monocyte-derived macrophages. We further show that through macrophage-mediated IL-12 production, IFN-λ is able to indirectly affect NK cells and ultimately induce IFN-γ production.


Asunto(s)
Interferón gamma/biosíntesis , Interleucina-12/biosíntesis , Interleucinas/farmacología , Células Asesinas Naturales/efectos de los fármacos , Macrófagos/efectos de los fármacos , Comunicación Celular/inmunología , Regulación de la Expresión Génica , Humanos , Interferón-alfa/farmacología , Interferón gamma/inmunología , Interferones , Interleucina-12/inmunología , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/inmunología , Cultivo Primario de Células , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
17.
J Hepatol ; 61(3): 660-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24798624

RESUMEN

Globally, over 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV). These chronic infections cause liver inflammation, and may result in fibrosis/cirrhosis or hepatocellular carcinoma. Albeit that HBV and HCV differ in various aspects, clearance, persistence, and immunopathology of either infection depends on the interplay between the innate and adaptive responses in the liver. Kupffer cells, the liver-resident macrophages, are abundantly present in the sinusoids of the liver. These cells have been shown to be crucial players to maintain homeostasis, but also contribute to pathology. However, it is important to note that especially during pathology, Kupffer cells are difficult to distinguish from infiltrating monocytes/macrophages and other myeloid cells. In this review we discuss our current understanding of Kupffer cells, and assess their role in the regulation of anti-viral immunity and disease pathogenesis during HBV and HCV infection.


Asunto(s)
Hepatitis B/fisiopatología , Hepatitis C/fisiopatología , Macrófagos del Hígado/fisiología , Hepacivirus/inmunología , Hepacivirus/fisiología , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Humanos , Inmunidad/fisiología
18.
PLoS One ; 9(5): e97006, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24824830

RESUMEN

Individuals who are chronically infected with the hepatitis B virus (HBV) are highly heterogeneous with respect to serum levels of HBV DNA, HBV particles and viral proteins. Since circulating leukocytes, such as monocytes, are constantly exposed to these viral components, it is likely that the functionality of these cells is affected. However, at present, little information is available on the consequences of the interaction between monocytes and viral components. Therefore, we examined the in vitro effects of HBV surface antigen (HBsAg) on monocytes and evaluated whether these effects were reflected in vivo. We observed that in vitro HBsAg exposure of monocytes induced robust production of IL-6 and TNF. However, between chronic HBV patients with distinct levels of serum HBsAg, HBV early antigen (HBeAg), and HBV DNA, TLR-induced monocyte cytokine production did not differ. Importantly, HBsAg-induced cytokine production by monocytes was similar between patients and healthy controls showing that earlier in vivo exposure to HBsAg does not affect the in vitro response. Additionally, we show that IL-10 is able to inhibit cytokine production by HBsAg-induced monocytes. In conclusion, we demonstrate that monocytes can recognize and respond to HBsAg, resulting in vigorous pro-inflammatory cytokine production in vitro. However, phenotype and function of the monocyte compartment in chronic HBV patients are not influenced by differences in levels of serum viral components, suggesting that regulatory mechanisms are active to avoid excessive in vivo monocyte activation.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/inmunología , Hepatitis B/inmunología , Interleucina-6/biosíntesis , Monocitos/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Adolescente , Adulto , Femenino , Hepatitis B/sangre , Hepatitis B/virología , Antígenos e de la Hepatitis B/inmunología , Humanos , Interleucina-10/biosíntesis , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Front Immunol ; 5: 131, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24744755

RESUMEN

Dendritic cells (DC) represent a heterogeneous population of antigen-presenting cells that are crucial in initiating and shaping immune responses. Although all DC are capable of antigen-uptake, processing, and presentation to T cells, DC subtypes differ in their origin, location, migration patterns, and specialized immunological roles. While in recent years, there have been rapid advances in understanding DC subset ontogeny, development, and function in mice, relatively little is known about the heterogeneity and functional specialization of human DC subsets, especially in tissues. In steady-state, DC progenitors deriving from the bone marrow give rise to lymphoid organ-resident DC and to migratory tissue DC that act as tissue sentinels. During inflammation additional DC and monocytes are recruited to the tissues where they are further activated and promote T helper cell subset polarization depending on the environment. In the current review, we will give an overview of the latest developments in human DC research both in steady-state and under inflammatory conditions. In this context, we review recent findings on DC subsets, DC-mediated cross-presentation, monocyte-DC relationships, inflammatory DC development, and DC-instructed T-cell polarization. Finally, we discuss the potential role of human DC in chronic inflammatory diseases.

20.
Mol Immunol ; 53(1-2): 72-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22814486

RESUMEN

The combination of ribavirin and peginterferon is the current standard of anti-viral treatment for chronic HCV patients. However, little is known on the mode of action of ribavirin in the anti-viral treatment of HCV patients. To investigate the immunomodulatory mechanism of ribavirin, we studied peginterferon alone versus peginterferon and ribavirin in chronic HBV patients. The addition of ribavirin did not affect the number of myeloid dendritic cells (mDC) or plasmacytoid dendritic cells (pDC), nor did it enhance T-helper-1 cell activity or T-cell proliferation. In contrast, it increased upregulation of activation markers on mDC and pDC, which was sustained throughout treatment. However, the addition of ribavirin had no effect on IFNα production by pDC. Our findings demonstrate that, although ribavirin does not lead to a viral load decline, in vivo treatment with ribavirin affects the activation of pDC and mDC in chronic HBV patients.


Asunto(s)
Antivirales/administración & dosificación , Células Dendríticas/efectos de los fármacos , Hepatitis B Crónica/tratamiento farmacológico , Interferón-alfa/administración & dosificación , Polietilenglicoles/administración & dosificación , Ribavirina/administración & dosificación , Adulto , Anciano , Células Dendríticas/inmunología , Quimioterapia Combinada , Femenino , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Humanos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/administración & dosificación , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Carga Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA