Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EMBO J ; 40(23): e109935, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751964

RESUMEN

While key developmental functions of neurotransmitters have been described in rodent neural progenitors, there is a lack of understanding of their roles in the human fetal brain. A new study published in The EMBO Journal demonstrates that human cortical interneurons that are moving in fused brain organoids express a large repertoire of neurotransmitter receptors whose activation fine tunes selective migration strategies.


Asunto(s)
Interneuronas , Neurogénesis , Movimiento Celular , Humanos , Neurotransmisores , Organoides
2.
Curr Opin Neurobiol ; 66: 166-177, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33246264

RESUMEN

Here, we summarize the current knowledge on cell diversity in the cortex and other brain regions from in vivo mouse models and in vitro models based on pluripotent stem cells. We discuss the mechanisms underlying cell proliferation and temporal progression that leads to the sequential generation of neurons dedicated to different layers of the cortex. We highlight models of corticogenesis from stem cells that recapitulate specific transcriptional and connectivity patterns from different cortical areas. We overview state-of-the art of human brain organoids modeling different brain regions, and we discuss insights into human cortical evolution from stem cells. Finally, we interrogate human brain organoid models for their competence to recapitulate the essence of human brain development.


Asunto(s)
Corteza Cerebral , Células Madre Pluripotentes , Animales , Encéfalo , Linaje de la Célula , Humanos , Ratones , Organoides
3.
Front Cell Dev Biol ; 8: 548, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714932

RESUMEN

In the mammalian adult hippocampus, new neurons are continuously generated throughout life in the subgranular zone of the dentate gyrus. Increasing evidence point out the contribution of adult-born hippocampal granule cells (GCs) to cognitive processes such as learning and memory, indicating the relevance of understanding the molecular mechanisms that control the development of these new neurons in the preexisting hippocampal circuits. Cell proliferation and functional integration of adult-born GCs is a process highly regulated by different intrinsic and extrinsic factors. In this review, we discuss recent advances related with cellular components and extrinsic signals of the hippocampal neurogenic niche that support and modulate neurogenesis under physiological conditions.

4.
Cell Rep ; 29(13): 4308-4319.e4, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875542

RESUMEN

The glial cell line-derived neurotrophic factor (GDNF) is required for the survival and differentiation of diverse neuronal populations during nervous system development. Despite the high expression of GDNF and its receptor GFRα1 in the adult hippocampus, the functional role of this system remains unknown. Here, we show that GDNF, acting through its GFRα1 receptor, controls dendritic structure and spine density of adult-born granule cells, which reveals that GFRα1 is required for their integration into preexisting circuits. Moreover, conditional mutant mice for GFRα1 show deficits in behavioral pattern separation, a task in which adult neurogenesis is known to play a critical role. We also find that running increases GDNF in the dentate gyrus and promotes GFRα1-dependent CREB (cAMP response element-binding protein) activation and dendrite maturation. Together, these findings indicate that GDNF/GFRα1 signaling plays an essential role in the plasticity of adult circuits, controlling the integration of newly generated neurons.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipocampo/citología , Neurogénesis , Neuronas/metabolismo , Animales , Conducta Animal , Dendritas/metabolismo , Giro Dentado/metabolismo , Ratones , Condicionamiento Físico Animal , Memoria Espacial
5.
Front Cell Neurosci ; 13: 384, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555094

RESUMEN

Neurotrophic factors are relevant regulators of the neurogenic process at different levels. In particular, the brain-derived neurotrophic factor, BDNF, is highly expressed in the hippocampus (HC) of rodents and participates in the control of neuronal proliferation, and survival in the dentate gyrus (DG). Likewise, serotonin is also involved in the regulation of neurogenesis, though its role is apparently more complex. Indeed, both enhancement of serotonin neurotransmission as well as serotonin depletion, paradoxically increase neuronal survival in the HC of mice. In this study, we analyzed the protein expression of the BDNF isoforms, i.e., pro- and mature-BDNF, and their respective receptors p75 and TrkB, in the HC of mice chronically treated with para-chloro-phenyl-alanine (PCPA), an inhibitor of serotonin synthesis. The same analysis was conducted in hyposerotonergic mice with concomitant administration of the 5-HT1 A receptor agonist, 8-Hydroxy-2-(di-n- propylamino) tetralin (8-OH-DPAT). Increased expression of p75 receptor with decreased expression of pro-BDNF was observed after chronic PCPA. Seven-day treatment with 8-OH-DPAT reestablished the expression of pro-BDNF modified by PCPA, and induced an increase in the expression of p75 receptor. It has been demonstrated that PCPA-treated mice have higher number of immature neurons in the HC. Given that immature neurons participate in the pattern separation process, the object pattern separation test was conducted. A better performance of hyposerotonergic mice was not confirmed in this assay. Altogether, our results show that molecules in the BDNF signaling pathway are differentially expressed under diverse configurations of the serotonergic system, allowing for fine-tuning of the neurogenic process.

6.
Stem Cell Reports ; 10(3): 1000-1015, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29478900

RESUMEN

The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs) determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2), promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Neuronas/fisiología , Ratas , Ratas Wistar , Transducción de Señal/fisiología
7.
Development ; 143(22): 4224-4235, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707798

RESUMEN

The formation of synaptic connections during nervous system development requires the precise control of dendrite growth and synapse formation. Although glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are expressed in the forebrain, the role of this system in the hippocampus remains unclear. Here, we investigated the consequences of GFRα1 deficiency for the development of hippocampal connections. Analysis of conditional Gfra1 knockout mice shows a reduction in dendritic length and complexity, as well as a decrease in postsynaptic density specializations and in the synaptic localization of postsynaptic proteins in hippocampal neurons. Gain- and loss-of-function assays demonstrate that the GDNF-GFRα1 complex promotes dendritic growth and postsynaptic differentiation in cultured hippocampal neurons. Finally, in vitro assays revealed that GDNF-GFRα1-induced dendrite growth and spine formation are mediated by NCAM signaling. Taken together, our results indicate that the GDNF-GFRα1 complex is essential for proper hippocampal circuit development.


Asunto(s)
Dendritas/fisiología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Hipocampo/crecimiento & desarrollo , Moléculas de Adhesión de Célula Nerviosa/fisiología , Neurogénesis/genética , Plasticidad Neuronal/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos/fisiología , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Neuronas/fisiología , Unión Proteica , Ratas , Ratas Wistar
8.
Neurochem Res ; 34(11): 2022-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19462231

RESUMEN

This paper describes modifications of the standard methods for obtaining a soluble nuclear fraction from embryonic brain tissue. The main improvements are: (1) the inclusion of a low speed centrifugation step to prevent the appearance of high density contaminants, (2) a sucrose density gradient to remove perinuclear mitochondria and ER membranes and (3) a protein extraction approach which significantly enhances protein yield. To demonstrate the effectiveness of the method, pellets were analyzed by light and electron microscopy and purity of the soluble extracts was immunologically tested. Finally, to illustrate the applicability of this approach, the induction of the transcription factor HIF-1 (hypoxia-inducible factor-1) was assessed by Western blot using soluble nuclear fractions and by immuno-electron microscopy using purified nuclear fractions, both obtained from the optic lobes of chick embryos. In conclusion, the procedure presently described appears to be reliable and convenient for obtaining a pure soluble nuclear fraction from a discrete amount of embryonic brain tissue.


Asunto(s)
Encéfalo/ultraestructura , Fraccionamiento Celular/métodos , Núcleo Celular , Animales , Núcleo Celular/química , Núcleo Celular/ultraestructura , Centrifugación , Embrión de Pollo , Factor 1 Inducible por Hipoxia/biosíntesis , Microscopía Inmunoelectrónica , Proteínas Nucleares/aislamiento & purificación , Octoxinol , Dodecil Sulfato de Sodio , Solubilidad , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA