Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 23(1): 47-60, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844317

RESUMEN

The prefrontal cortex (PFC) is implicated in processing of the affective state of others through non-verbal communication. This social cognitive function is thought to rely on an intact cortical neuronal excitatory and inhibitory balance. Here combining in vivo electrophysiology with a behavioral task for affective state discrimination in mice, we show a differential activation of medial PFC (mPFC) neurons during social exploration that depends on the affective state of the conspecific. Optogenetic manipulations revealed a double dissociation between the role of interneurons in social cognition. Specifically, inhibition of mPFC somatostatin (SOM+), but not of parvalbumin (PV+) interneurons, abolishes affective state discrimination. Accordingly, synchronized activation of mPFC SOM+ interneurons selectively induces social discrimination. As visualized by in vivo single-cell microendoscopic Ca2+ imaging, an increased synchronous activity of mPFC SOM+ interneurons, guiding inhibition of pyramidal neurons, is associated with affective state discrimination. Our findings provide new insights into the neurobiological mechanisms of affective state discrimination.


Asunto(s)
Afecto/fisiología , Interneuronas/fisiología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Masculino , Ratones , Somatostatina/metabolismo
2.
Curr Biol ; 29(12): 1938-1953.e6, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31178317

RESUMEN

Recognition of other's emotions influences the way social animals interact and adapt to the environment. The neuropeptide oxytocin (OXT) has been implicated in different aspects of emotion processing. However, the role of endogenous OXT brain pathways in the social response to different emotional states in conspecifics remains elusive. Here, using a combination of anatomical, genetic, and chemogenetic approaches, we investigated the contribution of endogenous OXT signaling in the ability of mice to discriminate unfamiliar conspecifics based on their emotional states. We found that OXTergic projections from the paraventricular nucleus of the hypothalamus (PVN) to the central amygdala (CeA) are crucial for the discrimination of both positively and negatively valenced emotional states. In contrast, blocking PVN OXT release into the nucleus accumbens, prefrontal cortex, and hippocampal CA2 did not alter this emotion discrimination. Furthermore, silencing each of these PVN OXT pathways did not influence basic social interaction. These findings were further supported by the demonstration that virally mediated enhancement of OXT signaling within the CeA was sufficient to rescue emotion discrimination deficits in a genetic mouse model of cognitive liability. Our results indicate that CeA OXT signaling plays a key role in emotion discrimination both in physiological and pathological conditions.


Asunto(s)
Núcleo Amigdalino Central/metabolismo , Emociones , Ratones/fisiología , Oxitocina/metabolismo , Reconocimiento en Psicología , Transducción de Señal , Animales , Femenino , Masculino , Ratones/psicología , Ratones Endogámicos C57BL , Ratones Noqueados , Núcleo Hipotalámico Paraventricular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...