Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 72(8): 3061-3073, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33585900

RESUMEN

Cinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Propanoles/metabolismo , Transcinamato 4-Monooxigenasa , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Transcinamato 4-Monooxigenasa/genética , Transcinamato 4-Monooxigenasa/metabolismo
2.
Plant Biotechnol J ; 17(4): 750-761, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220095

RESUMEN

Emerging genome editing technologies hold great promise for the improvement of agricultural crops. Several related genome editing methods currently in development utilize engineered, sequence-specific endonucleases to generate DNA double strand breaks (DSBs) at user-specified genomic loci. These DSBs subsequently result in small insertions/deletions (indels), base substitutions or incorporation of exogenous donor sequences at the target site, depending on the application. Targeted mutagenesis in soybean (Glycine max) via non-homologous end joining (NHEJ)-mediated repair of such DSBs has been previously demonstrated with multiple nucleases, as has homology-directed repair (HDR)-mediated integration of a single transgene into target endogenous soybean loci using CRISPR/Cas9. Here we report targeted integration of multiple transgenes into a single soybean locus using a zinc finger nuclease (ZFN). First, we demonstrate targeted integration of biolistically delivered DNA via either HDR or NHEJ to the FATTY ACID DESATURASE 2-1a (FAD2-1a) locus of embryogenic cells in tissue culture. We then describe ZFN- and NHEJ-mediated, targeted integration of two different multigene donors to the FAD2-1a locus of immature embryos. The largest donor delivered was 16.2 kb, carried four transgenes, and was successfully transmitted to T1 progeny of mature targeted plants obtained via somatic embryogenesis. The insertions in most plants with a targeted, 7.1 kb, NHEJ-integrated donor were perfect or near-perfect, demonstrating that NHEJ is a viable alternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fertile transgenic soybean plants with NHEJ-mediated targeted insertions of multigene donors at an endogenous genomic locus.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Edición Génica , Marcación de Gen , Glycine max/genética , Nucleasas con Dedos de Zinc/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Plantas Modificadas Genéticamente , Reparación del ADN por Recombinación , Glycine max/embriología , Glycine max/enzimología , Transformación Genética , Transgenes , Nucleasas con Dedos de Zinc/genética
3.
Plant Sci ; 269: 148-152, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606213

RESUMEN

Hydroxycinnamoyl-Coenzyme A (CoA) hydroxycinnamoyl transferases are BAHD family acyltransferases that transfer hydroxycinnamoyl moieties from a CoA-thioester to an acceptor amine or alcohol to form an N-hydroxycinnamoyl amide or O-hydroxycinnamoyl ester, respectively, with the concomitant release of free CoA. One approach to measure reaction rates for these enzymes is to quantify the hydroxycinnamoyl amide or ester reaction product following chromatographic separation of reaction components. This approach can be labor-intensive and time-consuming. As an alternative, we examined the use of 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB, Ellman's reagent) to spectrophotometrically quantify, in real time, the release of free CoA during the transferase reaction. Using a hydroxycinnamoyl-CoA:l-DOPA hydroxycinnamoyl transferase as a model, we show that DTNB has little to no effect on the transferase reaction and can be used to provide a good estimate of hydroxycinnamoyl amide formation, thus allowing for the quick and easy collection of reaction rate data and determination of transferase kinetic parameters. This approach should be applicable to a wide range of hydroxycinnamoyl-CoA and other BAHD acyltransferases.


Asunto(s)
Aciltransferasas/metabolismo , Coenzima A/metabolismo , Ácido Ditionitrobenzoico/química , Proteínas de Plantas/metabolismo , Espectrofotometría/métodos , Cinética , Reactivos de Sulfhidrilo/química
4.
Plant Cell ; 29(12): 3269-3285, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29203634

RESUMEN

The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Epistasis Genética , Complejo Mediador/genética , Propanoles/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Supresores , Lignina/metabolismo , Malatos/metabolismo , Complejo Mediador/química , Complejo Mediador/metabolismo , Mutación Missense/genética , Fenotipo , Fenilpropionatos/metabolismo , Solubilidad , Estrés Fisiológico/genética , Supresión Genética
5.
Plant Physiol ; 169(3): 1557-67, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26048881

RESUMEN

Phenylpropanoids are phenylalanine-derived specialized metabolites and include important structural components of plant cell walls, such as lignin and hydroxycinnamic acids, as well as ultraviolet and visible light-absorbing pigments, such as hydroxycinnamate esters (HCEs) and anthocyanins. Previous work has revealed a remarkable degree of plasticity in HCE biosynthesis, such that most Arabidopsis (Arabidopsis thaliana) mutants with blockages in the pathway simply redirect carbon flux to atypical HCEs. In contrast, the ferulic acid hydroxylase1 (fah1) mutant accumulates greatly reduced levels of HCEs, suggesting that phenylpropanoid biosynthesis may be repressed in response to the loss of FERULATE 5-HYDROXYLASE (F5H) activity. Here, we show that in fah1 mutant plants, the activity of HCE biosynthetic enzymes is not limiting for HCE accumulation, nor is phenylpropanoid flux diverted to the synthesis of cell wall components or flavonol glycosides. We further show that anthocyanin accumulation is also repressed in fah1 mutants and that this repression is specific to tissues in which F5H is normally expressed. Finally, we show that repression of both HCE and anthocyanin biosynthesis in fah1 mutants is dependent on the MED5a/5b subunits of the transcriptional coregulatory complex Mediator, which are similarly required for the repression of lignin biosynthesis and the stunted growth of the phenylpropanoid pathway mutant reduced epidermal fluorescence8. Taken together, these observations show that the synthesis of HCEs and anthocyanins is actively repressed in a MEDIATOR-dependent manner in Arabidopsis fah1 mutants and support an emerging model in which MED5a/5b act as central players in the homeostatic repression of phenylpropanoid metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fenilpropionatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Cumáricos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Mutación
6.
Nature ; 509(7500): 376-80, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24670657

RESUMEN

Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Lignina/metabolismo , Complejo Mediador/genética , Mutación/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocombustibles , Biomasa , Pared Celular/química , Pared Celular/metabolismo , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/biosíntesis , Lignina/química , Complejo Mediador/química , Complejo Mediador/deficiencia , Complejo Mediador/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transcripción Genética/genética
7.
Curr Opin Biotechnol ; 24(2): 336-43, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23228388

RESUMEN

The secondary cell wall polymer lignin impedes the extraction of fermentable sugars from biomass, and has been one of the major impediments in the development of cost-effective biofuel technologies. Unfortunately, attempts to genetically engineer lignin biosynthesis frequently result in dwarfing or developmental abnormalities of unknown cause, thus limiting the benefits of increased fermentable sugar yield. In this brief review, we explore some of the possible mechanisms that could underlie this poorly understood phenomenon, with the expectation that an understanding of the cause of dwarfing in lignin biosynthetic mutants and transgenic plants could lead to new strategies for the development of improved bioenergy feedstocks.


Asunto(s)
Biomasa , Ingeniería Genética , Lignina/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Biocombustibles , Carbohidratos , Pared Celular/metabolismo , Lignina/biosíntesis , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/crecimiento & desarrollo
8.
J Biol Chem ; 287(8): 5434-45, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22167189

RESUMEN

The plant phenylpropanoid pathway produces an array of metabolites that impact human health and the utility of feed and fiber crops. We previously characterized several Arabidopsis thaliana mutants with dominant mutations in REDUCED EPIDERMAL FLUORESCENCE 4 (REF4) that cause dwarfing and decreased accumulation of phenylpropanoids. In contrast, ref4 null plants are of normal stature and have no apparent defect in phenylpropanoid biosynthesis. Here we show that disruption of both REF4 and its paralog, REF4-RELATED 1 (RFR1), results in enhanced expression of multiple phenylpropanoid biosynthetic genes, as well as increased accumulation of numerous downstream products. We also show that the dominant ref4-3 mutant protein interferes with the ability of the PAP1/MYB75 transcription factor to induce the expression of PAL1 and drive anthocyanin accumulation. Consistent with our experimental results, both REF4 and RFR1 have been shown to physically associate with the conserved transcriptional coregulatory complex, Mediator, which transduces information from cis-acting DNA elements to RNA polymerase II at the core promoter. Taken together, our data provide critical genetic support for a functional role of REF4 and RFR1 in the Mediator complex, and for Mediator in the maintenance of phenylpropanoid homeostasis. Finally, we show that wild-type RFR1 substantially mitigates the phenotype of the dominant ref4-3 mutant, suggesting that REF4 and RFR1 may compete with one another for common binding partners or for occupancy in Mediator. Determining the functions of diverse Mediator subunits is essential to understand eukaryotic gene regulation, and to facilitate rational manipulation of plant metabolic pathways to better suit human needs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis/genética , Proteínas de la Membrana/metabolismo , Compuestos Orgánicos/metabolismo , Transcripción Genética , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Mutación , Proteínas Asociadas a Pancreatitis , Fenotipo , Filogenia , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
9.
Science ; 332(6032): 960-3, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21551031

RESUMEN

Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.


Asunto(s)
Evolución Biológica , Genoma de Planta , Selaginellaceae/genética , Bryopsida/genética , Chlamydomonas/química , Chlamydomonas/genética , Elementos Transponibles de ADN , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Magnoliopsida/química , Magnoliopsida/genética , MicroARNs/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/análisis , Edición de ARN , ARN de Planta/genética , Secuencias Repetitivas de Ácidos Nucleicos , Selaginellaceae/crecimiento & desarrollo , Selaginellaceae/metabolismo , Análisis de Secuencia de ADN
10.
Annu Rev Genet ; 44: 337-63, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20809799

RESUMEN

The processes underlying lignification, which for many years have been the near-exclusive purview of chemists and biochemists, have more recently been approached using both classical forward genetic screens and targeted reverse genetic approaches such as antisense suppression, RNAi, and characterization of insertional mutants. In this review, we provide an overview of the current understanding of lignin biosynthesis and structure, with emphasis on mutant and transgenic plants that have contributed to this knowledge. We also discuss ongoing work aimed at elucidating the relationship between lignin structure and function in vivo, as well as the phenotypic consequences arising from genetic manipulation of the lignin biosynthetic pathway.


Asunto(s)
Lignina/biosíntesis , Lignina/genética , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Lignina/química , Lignina/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/genética
11.
Plant Cell ; 22(5): 1620-32, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20511296

RESUMEN

Defects in phenylpropanoid biosynthesis arising from deficiency in hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase (HCT) or p-coumaroyl shikimate 3'-hydroxylase (C3'H) lead to reduced lignin, hyperaccumulation of flavonoids, and growth inhibition in Arabidopsis thaliana. It was previously reported that flavonoid-mediated inhibition of auxin transport is responsible for growth reduction in HCT-RNA interference (RNAi) plants. This conclusion was based on the observation that simultaneous RNAi silencing of HCT and chalcone synthase (CHS), an enzyme essential for flavonoid biosynthesis, resulted in less severe dwarfing than silencing of HCT alone. In an attempt to extend these results using a C3'H mutant (ref8) and a CHS null mutant (tt4-2), we found that the growth phenotype of the ref8 tt4-2 double mutant, which lacks flavonoids, is indistinguishable from that of ref8. Moreover, using RNAi, we found that the relationship between HCT silencing and growth inhibition is identical in both the wild type and tt4-2. We conclude from these results that the growth inhibition observed in HCT-RNAi plants and the ref8 mutant is independent of flavonoids. Finally, we show that expression of a newly characterized gene bypassing HCT and C3'H partially restores both lignin biosynthesis and growth in HCT-RNAi plants, demonstrating that a biochemical pathway downstream of coniferaldehyde, probably lignification, is essential for normal plant growth.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Flavonoides/biosíntesis , Lignina/biosíntesis , Aciltransferasas/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Flavonoides/química , Lignina/química , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Mutación/genética , Fenoles/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Interferencia de ARN , Selaginellaceae/enzimología , Solubilidad , Transgenes/genética
12.
Plant Cell ; 22(4): 1033-45, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20371642

RESUMEN

Phenotypic convergence in unrelated lineages arises when different organisms adapt similarly under comparable selective pressures. In an apparent example of this process, syringyl lignin, a fundamental building block of plant cell walls, occurs in two major plant lineages, lycophytes and angiosperms, which diverged from one another more than 400 million years ago. Here, we show that this convergence resulted from independent recruitment of lignin biosynthetic cytochrome P450-dependent monooxygenases that route cell wall monomers through related but distinct pathways in the two lineages. In contrast with angiosperms, in which syringyl lignin biosynthesis requires two phenylpropanoid meta-hydroxylases C3'H and F5H, the lycophyte Selaginella employs one phenylpropanoid dual meta-hydroxylase to bypass several steps of the canonical lignin biosynthetic pathway. Transgenic expression of the Selaginella hydroxylase in Arabidopsis thaliana dramatically reroutes its endogenous lignin biosynthetic pathway, yielding a novel lignin composition not previously identified in nature. Our findings demonstrate a unique case of convergent evolution via distinct biochemical strategies and suggest a new way to genetically reconstruct lignin biosynthesis in higher plants.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Selaginellaceae/genética , Arabidopsis/enzimología , Arabidopsis/genética , Pared Celular/química , Sistema Enzimático del Citocromo P-450/genética , Prueba de Complementación Genética , Espectroscopía de Resonancia Magnética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Selaginellaceae/enzimología
13.
Curr Genet ; 54(2): 83-94, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18622616

RESUMEN

The novel yeast protein Tar1p is encoded on the anti-sense strand of the multi-copy nuclear 25S rRNA gene, localizes to mitochondria, and partially suppresses the mitochondrial RNA polymerase mutant, rpo41-R129D. However, the function of Tar1p in mitochondria and how its expression is regulated are currently unknown. Here we report that Tar1p is subject to glucose repression and is up-regulated during post-diauxic shift in glucose medium and in glycerol medium, conditions requiring elevated mitochondrial respiration. However, Tar1p expression is down-regulated in response to mitochondrial dysfunction caused by the rpo41-R129D mutation or in strains lacking respiration. Furthermore, in contrast to the previously reported beneficial effects of moderate over-expression of Tar1p in the rpo41-R129D strain, higher-level over-expression exacerbates the ROS-derived phenotypes of this mutant, including decreased respiration and life span. Finally, two-hybrid screening and in vitro-binding studies revealed a physical interaction between Tar1p and Coq5p, an enzyme involved in synthesizing the mitochondrial electron carrier and antioxidant, coenzyme Q. We propose that Tar1p expression is induced under respiratory conditions to maintain oxidative phosphorylation capacity, but that its levels in mitochondria are typically low and stringently controlled. Furthermore, we speculate that Tar1p is down-regulated when respiration is defective to prevent deleterious ROS-dependent consequences of mitochondrial dysfunction.


Asunto(s)
Respiración de la Célula/genética , ADN Ribosómico/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Ribosómico/genética , Proteínas Mitocondriales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Curr Opin Biotechnol ; 19(2): 166-72, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18403196

RESUMEN

Ethanol and other biofuels produced from lignocellulosic biomass represent a renewable, more carbon-balanced alternative to both fossil fuels and corn-derived or sugarcane-derived ethanol. Unfortunately, the presence of lignin in plant cell walls impedes the breakdown of cell wall polysaccharides to simple sugars and the subsequent conversion of these sugars to usable fuel. Recent advances in the understanding of lignin composition, polymerization, and regulation have revealed new opportunities for the rational manipulation of lignin in future bioenergy crops, augmenting the previous successful approach of manipulating lignin monomer biosynthesis. Furthermore, recent studies on lignin degradation in nature may provide novel resources for the delignification of dedicated bioenergy crops and other sources of lignocellulosic biomass.


Asunto(s)
Fuentes de Energía Bioeléctrica , Celulosa/metabolismo , Ingeniería Genética/métodos , Lignina/metabolismo , Biomasa , Celulosa/química , Lignina/química , Desarrollo de la Planta , Plantas/genética , Plantas/metabolismo , Plantas Modificadas Genéticamente
15.
J Clin Invest ; 117(9): 2723-34, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17786248

RESUMEN

Ataxia-telangiectasia mutated (ATM) kinase orchestrates nuclear DNA damage responses but is proposed to be involved in other important and clinically relevant functions. Here, we provide evidence for what we believe are 2 novel and intertwined roles for ATM: the regulation of ribonucleotide reductase (RR), the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates, and control of mitochondrial homeostasis. Ataxia-telangiectasia (A-T) patient fibroblasts, wild-type fibroblasts treated with the ATM inhibitor KU-55933, and cells in which RR is inhibited pharmacologically or by RNA interference (RNAi) each lead to mitochondrial DNA (mtDNA) depletion under normal growth conditions. Disruption of ATM signaling in primary A-T fibroblasts also leads to global dysregulation of the R1, R2, and p53R2 subunits of RR, abrogation of RR-dependent upregulation of mtDNA in response to ionizing radiation, high mitochondrial transcription factor A (mtTFA)/mtDNA ratios, and increased resistance to inhibitors of mitochondrial respiration and translation. Finally, there are reduced expression of the R1 subunit of RR and tissue-specific alterations of mtDNA copy number in ATM null mouse tissues, the latter being recapitulated in tissues from human A-T patients. Based on these results, we propose that disruption of RR and mitochondrial homeostasis contributes to the complex pathology of A-T and that RR genes are candidate disease loci in mtDNA-depletion syndromes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Homeostasis , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleótido Reductasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular/genética , Células Cultivadas , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Dosificación de Gen , Regulación Enzimológica de la Expresión Génica , Humanos , Mitocondrias/genética , Mutación/genética , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba
16.
Cell Cycle ; 6(13): 1574-8, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17603300

RESUMEN

The Mitochondrial Theory of Aging postulates that accumulation of mtDNA mutations and mitochondrial dysfunction are responsible for generating aging phenotypes and limiting lifespan. Although widely accepted, this theory remains unproven because the evidence supporting it, while substantial, is largely correlative. Furthermore, recent experimental results in mice with accelerated rates of mtDNA mutagenesis have challenged the traditional formulation of the Mitochondrial Theory, perhaps warranting a reevaluation of some of its core principles. In this perspective, we summarize recent work suggesting that both the quantity and the quality of mitochondrial gene expression play a much greater role in the aging process than previously appreciated. We speculate that this form of mitochondrial dysfunction may operate independently or in concert with mtDNA mutations to promote age-related pathology and limit lifespan.


Asunto(s)
Envejecimiento/genética , Genes Mitocondriales/fisiología , Longevidad/genética , Animales , Respiración de la Célula , Expresión Génica/fisiología , Humanos , Levaduras/genética
17.
Cell Metab ; 5(4): 265-77, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17403371

RESUMEN

The relationships between mitochondrial respiration, reactive oxygen species (ROS), and life span are complex and remain controversial. Inhibition of the target of rapamycin (TOR) signaling pathway extends life span in several model organisms. We show here that deletion of the TOR1 gene extends chronological life span in Saccharomyces cerevisiae, primarily by increasing mitochondrial respiration via enhanced translation of mtDNA-encoded oxidative phosphorylation complex subunits. Unlike previously reported pathways regulating chronological life span, we demonstrate that deletion of TOR1 delays aging independently of the antioxidant gene SOD2. Furthermore, wild-type and tor1 null strains differ in life span only when respiration competent and grown in normoxia in the presence of glucose. We propose that inhibition of TOR signaling causes derepression of respiration during growth in glucose and that the subsequent increase in mitochondrial oxygen consumption limits intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to lower cellular ROS and extension of chronological life span.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Longevidad/genética , Mitocondrias/genética , Fosfatidilinositol 3-Quinasas/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Respiración de la Célula/genética , Eliminación de Gen , Glucosa/farmacología , Longevidad/efectos de los fármacos , Mitocondrias/fisiología , Modelos Biológicos , Organismos Modificados Genéticamente , Consumo de Oxígeno , Fosfatidilinositol 3-Quinasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/fisiología
18.
Mol Cell ; 24(6): 813-25, 2006 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17189185

RESUMEN

Mitochondria contain their own DNA (mtDNA) that is expressed and replicated by nucleus-encoded factors imported into the organelle. Recently, the core human mitochondrial transcription machinery has been defined, comprising a bacteriophage-related mtRNA polymerase (POLRMT), an HMG-box transcription factor (h-mtTFA), and two transcription factors (h-mtTFB1 and h-mtTFB2) that also serve as rRNA methyltransferases. Here, we describe these transcription components as well as recent insights into the mechanism of human mitochondrial transcription initiation and its regulation. We also discuss novel roles for the mitochondrial transcription machinery beyond transcription initiation, including priming of mtDNA replication, packaging of mtDNA, coordination of ribosome biogenesis, and coupling of transcription to translation.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Modelos Genéticos , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica , Humanos , Metiltransferasas/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Factores de Transcripción/genética
19.
Mol Cell Biol ; 26(13): 4818-29, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16782871

RESUMEN

Mitochondrial dysfunction causes numerous human diseases and is widely believed to be involved in aging. However, mechanisms through which compromised mitochondrial gene expression elicits the reported variety of cellular defects remain unclear. The amino-terminal domain (ATD) of yeast mitochondrial RNA polymerase is required to couple transcription to translation during expression of mitochondrial DNA-encoded oxidative phosphorylation subunits. Here we report that several ATD mutants exhibit reduced chronological life span. The most severe of these (harboring the rpo41-R129D mutation) displays imbalanced mitochondrial translation, conditional inactivation of respiration, elevated production of reactive oxygen species (ROS), and increased oxidative stress. Reduction of ROS, via overexpression of superoxide dismutase (SOD1 or SOD2 product), not only greatly extends the life span of this mutant but also increases its ability to respire. Another ATD mutant with similarly reduced respiration (rpo41-D152A/D154A) accumulates only intermediate levels of ROS and has a less severe life span defect that is not rescued by SOD. Altogether, our results provide compelling evidence for the "vicious cycle" of mitochondrial ROS production and lead us to propose that the amount of ROS generated depends on the precise nature of the mitochondrial gene expression defect and initiates a downward spiral of oxidative stress only if a critical threshold is crossed.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Regulación Fúngica de la Expresión Génica , Genes Mitocondriales , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales , Mutación , Fenotipo , Biosíntesis de Proteínas/genética , ARN/metabolismo , ARN Mitocondrial , Especies Reactivas de Oxígeno/análisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
J Biol Chem ; 277(27): 24420-6, 2002 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-12006589

RESUMEN

Eukaryotic RNA polymerase II and Escherichia coli RNA polymerase possess an intrinsic ribonuclease activity that is stimulated by the polymerase-binding proteins SII and GreB, respectively. This factor-activated hydrolysis of nascent RNA has been postulated to be involved in transcription elongation as well as removal of incorrect bases misincorporated into RNA. Little is known about the frequency of misincorporation by RNA polymerases in vivo or about the mechanisms involved in improving RNA polymerase accuracy. Here we have developed a luciferase reporter system in an effort to assay for base misincorporation in living Saccharomyces cerevisiae. The assay employs a luciferase open reading frame that contains a premature stop codon. The inactive truncated enzyme would become active if misincorporation by RNA polymerase II took place at the stop triplet. Yeast lacking SII did not display a significant change in reporter activity when compared with wild-type cells. We estimate that under our assay conditions, mRNAs with a misincorporation at the test site could not exceed 1 transcript per 500 cells. The reporter assay was very effective in detecting the previously described process of nonsense suppression (translational read-through) by ribosomes, making it difficult to determine an absolute level of basal (SII-independent) misincorporation by RNA polymerase II. Although these data cannot exclude the possibility that SII is involved in proofreading, they make it unlikely that such a contribution is physiologically significant, especially relative to the high frequency of translational errors.


Asunto(s)
Luciferasas/genética , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Transcripción Genética , Escherichia coli/genética , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Cinética , Sistemas de Lectura Abierta , Plásmidos , Biosíntesis de Proteínas/efectos de los fármacos , Puromicina/farmacología , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...