Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(5): 3033-3043, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38652289

RESUMEN

Intrinsically disordered proteins (IDPs) do not have a well-defined folded structure but instead behave as extended polymer chains in solution. Many IDPs are rich in glycine residues, which create steric barriers to secondary structuring and protein folding. Inspired by this feature, we have studied how the introduction of glycine residues influences the secondary structure of a model polypeptide, poly(l-glutamic acid), a helical polymer. For this purpose, we carried out ring-opening copolymerization with γ-benzyl-l-glutamate and glycine N-carboxyanhydride (NCA) monomers. We aimed to control the glycine distribution within PBLG by adjusting the reactivity ratios of the two NCAs using different reaction conditions (temperature, solvent). The relationship between those conditions, the monomer distributions, and the secondary structure enabled the design of intrinsically disordered polypeptides when a highly gradient microstructure was achieved in DMSO.


Asunto(s)
Anhídridos , Glicina , Proteínas Intrínsecamente Desordenadas , Polimerizacion , Glicina/química , Proteínas Intrínsecamente Desordenadas/química , Anhídridos/química , Ácido Poliglutámico/química , Ácido Poliglutámico/análogos & derivados , Estructura Secundaria de Proteína , Péptidos/química , Pliegue de Proteína
2.
Macromol Rapid Commun ; : e2400079, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662380

RESUMEN

Protein-polymer conjugates and polymeric nanomaterials hold great promise in many applications including biomaterials, medicine, or nanoelectronics. In this work, the first polymerization-induced self-assembly (PISA) approach performed in aqueous medium enabling protein-polymer conjugates and nanoparticles entirely composed of amino acids is presented by using ring-opening polymerization (ROP). It is indeed shown that aqueous ring-opening polymerization-induced self-assembly (ROPISA) can be used with protein or peptidic macroinitiators without prior chemical modification and afford the simple preparation of nanomaterials with protein-like property, for example, to implement biomimetic thermoresponsivity in drug delivery.

3.
Chempluschem ; : e202300492, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38264807

RESUMEN

At the origin, the emergence of proteins was based on crucial prebiotic stages in which simple amino acids-based building blocks spontaneously evolved from the prebiotic soup into random proto-polymers called protoproteins. Despite advances in modern peptide synthesis, these prebiotic chemical routes to protoproteins remain puzzling. We discuss in this perspective how polymer science and systems chemistry are reaching a point of convergence in which simple monomers called N-carboxyanhydrides would be able to form such protoproteins via the emergence of a protometabolic cycle involving aqueous polymerization and featuring macromolecular Darwinism behavior.

4.
Biomacromolecules ; 23(11): 4718-4733, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36269943

RESUMEN

Within this study, an amphiphilic and potentially biodegradable polypeptide library based on poly[(4-aminobutyl)-l-glutamine-stat-hexyl-l-glutamine] [P(AB-l-Gln-stat-Hex-l-Gln)] was investigated for gene delivery. The influence of varying proportions of aliphatic and cationic side chains affecting the physicochemical properties of the polypeptides on transfection efficiency was investigated. A composition of 40 mol% Hex-l-Gln and 60 mol % AB-l-Gln (P3) was identified as best performer over polypeptides with higher proportions of protonatable monomers. Detailed studies of the transfection mechanism revealed the strongest interaction of P3 with cell membranes, promoting efficient endocytic cell uptake and high endosomal release. Spectrally, time-, and z-resolved fluorescence microscopy further revealed the crucial role of filopodia surfing in polyplex-cell interaction and particle internalization in lamellipodia regions, followed by rapid particle transport into cells. This study demonstrates the great potential of polypeptides for gene delivery. The amphiphilic character improves performance over cationic homopolypeptides, and the potential biodegradability is advantageous toward other synthetic polymeric delivery systems.


Asunto(s)
Técnicas de Transferencia de Gen , Glutamina , Terapia Genética , Transfección , Cationes , Péptidos
5.
Angew Chem Int Ed Engl ; 61(46): e202209530, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36107726

RESUMEN

We report that synthetic polymers consisting of L-proline monomer units exhibit temperature-driven aggregation in water with unprecedented hysteresis. This protein-like behavior is robust and governed by the chirality of the proline units. It paves the way to new processes, driven by either temperature or ionic strength changes, such as a simple "with memory" thermometer.


Asunto(s)
Polímeros , Prolina , Temperatura , Proteínas , Agua
6.
J Mater Chem B ; 9(39): 8224-8236, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34643200

RESUMEN

In the present study, three biodegradable block copolymers composed of a poly(ethylene glycol) block and a copolypeptide block with varying compositions of cationic L-lysine (L-Lys) and hydrophobic benzyl-L-glutamate (Bzl-L-Glu) were designed for gene delivery applications. The polypeptides were synthesized by ring opening polymerization (ROP) and after orthogonal deprotection of Boc-L-Lys side chains, the polymer exhibited an amphiphilic character. To bind or encapsulate plasmid DNA (pDNA), different formulations were investigated: a nanoprecipitation and an emulsion technique using various organic solvents as well as an aqueous pH-controlled formulation method. The complex and nanoparticle (NP) formations were monitored by dynamic light scattering (DLS), and pDNA interaction was shown by gel electrophoresis and subsequent controlled release with heparin. The polypeptides were further tested for their cytotoxicity as well as biodegradability. The complexes and NPs presenting the most promising size distributions and pDNA binding ability were subsequently evaluated for their transfection efficiency in HEK293T cells. The highest transfection efficiencies were obtained with an aqueous formulation of the polypeptide containing the highest L-Lys content and lowest proportion of hydrophobic, helical structures (P1*), which is therefore a promising candidate for efficient gene delivery by biodegradable gene delivery vectors.


Asunto(s)
Materiales Biocompatibles/química , ADN/química , Péptidos/química , Polietilenglicoles/química , Transfección , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel de Agar , Técnicas de Transferencia de Gen , Ácido Glutámico/análogos & derivados , Ácido Glutámico/química , Humanos , Lisina/química , Ratones , Nanopartículas
7.
J Am Chem Soc ; 143(10): 3697-3702, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33651603

RESUMEN

Cyclic polymers display unique physicochemical and biological properties. However, their development is often limited by their challenging preparation. In this work, we present a simple route to cyclic poly(α-peptoids) from N-alkylated-N-carboxyanhydrides (NNCA) using LiHMDS promoted ring-expansion polymerization (REP) in DMF. This new method allows the unprecedented use of lysine-like monomers in REP to design bioactive macrocycles bearing pharmaceutical potential against Clostridioides difficile, a bacterium responsible for nosocomial infections.


Asunto(s)
Peptoides/química , Polímeros/química , Compuestos de Trimetilsililo/química , Catálisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Ciclización , Teoría Funcional de la Densidad , Humanos , Pruebas de Sensibilidad Microbiana , Polimerizacion , Polímeros/síntesis química , Polímeros/farmacología
8.
Biomacromolecules ; 22(1): 57-75, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-32786537

RESUMEN

Antimicrobial peptides (AMPs) are naturally occurring macromolecules made of amino acids that are potent broad-spectrum antibiotics with potential as novel therapeutic agents. This review aims to summarize the fundamental principles concerning the structure and mechanism of action of these AMPs, in order to guide the design of polymeric analogues that organic chemistry can generate. Among those simplified analogues, this review particularly focuses on those made of amino acids called polypeptide polymers: they are showing great potential by providing one of the best biomimetic and bioactive structures for further biomaterials science applications.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Polímeros , Proteínas Citotóxicas Formadoras de Poros
9.
Biomacromolecules ; 21(8): 3411-3419, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32786675

RESUMEN

Delicate control over architectures via crystallization-driven self-assembly (CDSA) in aqueous solution, particularly combined with external stimuli, is rare and challenging. Here, we report a stepwise CDSA process thermally initiated from amphiphilic poly(N-allylglycine)-b-poly(N-octylglycine) (PNAG-b-PNOG) conjugated with thiol-terminated triethylene glycol monomethyl ethers ((PNAG-g-EG3)-b-PNOG) in aqueous solution. The diblock copolymers show a reversible thermoresponsive behavior with nearly identical cloud points in both heating and cooling runs. In contrast, the morphology transition of the assemblies is irreversible upon a heating-cooling cycle because of the presence of a confined domain arising from crystalline PNOG, which allows for the achievement of different nanostructured assemblies by the same polymer. We demonstrated that the thermoresponsive property of PNAG-g-EG3 initiates assembly kinetically that is subsequently promoted by crystallization of PNOG thermodynamically. The irreversible morphology transition behavior provides a convenient platform for comparing the cellular uptake efficiency of nanostructured assemblies with various morphologies that are otherwise similar.


Asunto(s)
Nanoestructuras , Polímeros , Cristalización , Micelas , Transición de Fase
10.
Polymers (Basel) ; 12(6)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560277

RESUMEN

Nucleobase-containing polymers are an emerging class of building blocks for the self-assembly of nanoobjects with promising applications in nanomedicine and biology. Here we present a macromolecular engineering approach to design nucleobase-containing polypeptide polymers incorporating thymine that further self-assemble in nanomaterials. Diblock and triblock copolypeptide polymers were prepared using sequential ring-opening polymerization of γ-Benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) and γ-Propargyl-l-glutamate N-carboxyanhydride (PLG-NCA), followed by an efficient copper(I)-catalyzed azide alkyne cycloaddition (CuAAc) functionalization with thymidine monophosphate. Resulting amphiphilic copolymers were able to spontaneously form nanoobjects in aqueous solutions avoiding a pre-solubilization step with an organic solvent. Upon self-assembly, light scattering measurements and transmission electron microscopy (TEM) revealed the impact of the architecture (diblock versus triblock) on the morphology of the resulted nanoassemblies. Interestingly, the nucleobase-containing nanoobjects displayed free thymine units in the shell that were found available for further DNA-binding.

11.
ACS Med Chem Lett ; 11(4): 464-472, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32292551

RESUMEN

An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC50 ≤ 13 µM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = -0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds.

12.
Nat Commun ; 11(1): 2051, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345967

RESUMEN

A key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory-Huggins solution theory supplemented by the critical influence of the volume fraction of the block components. Here we show that a completely different approach can lead to tunable 2D lamellar organization of nanoparticles with homopolymers only, on condition that few elementary rules are respected: 1) the polymer spontaneously allows a structural preorganization, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the nanoparticles show a surface accessible for coordination.


Asunto(s)
Nanopartículas del Metal/química , Péptidos/química , Platino (Metal)/química , Polímeros/química , Nanopartículas del Metal/ultraestructura , Espectroscopía de Fotoelectrones , Polimerizacion
13.
Angew Chem Int Ed Engl ; 59(2): 622-626, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31650664

RESUMEN

Reported here is the first aqueous ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs) using α-amino-poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self-assembly (ISA). This ROPISA process affords well-defined amphiphilic diblock copolymers that simultaneously form original needle-like nanoparticles.

14.
Int J Pharm ; 569: 118585, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31376467

RESUMEN

In this work, we implemented a supramolecular approach in order to combine photodynamic therapy (PDT) with gene therapy. We made use of a simple cationic guanidylated porphyrin (H2­PG) with the hypothesis that porphyrin aggregates should be capable of complexing siRNA through multivalent interactions and thus contribute to its intracellular delivery, while remaining active photosensitizers for PDT. The PDT effect of H2­PG was shown by incubating human breast cancer cells (MDA-MB-231) with H2­PG followed by light-irradiation at 405 nm. On the other hand, while siRNA do not enter cells alone, we showed, by fluorescence confocal microscopy and flow cytometry, that H2­PG promotes the internalization of Atto-488 siRNA. Finally, studying the combined PDT and delivery of siRNA directed against inhibitory apoptotic protein (IAP) family, we found an additive effect of the two therapies, thereby demonstrating that H2­PG is capable of acting both as a photosensitizer and supramolecular siRNA vector.


Asunto(s)
Silenciador del Gen , Fotoquimioterapia , Fármacos Fotosensibilizantes/administración & dosificación , Porfirinas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Línea Celular Tumoral , Terapia Genética , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Fármacos Fotosensibilizantes/química , Porfirinas/química , ARN Interferente Pequeño/química
15.
ChemMedChem ; 13(20): 2217-2228, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30221468

RESUMEN

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 µm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 µm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.


Asunto(s)
Nitroquinolinas/farmacología , Quinolonas/farmacología , Tripanocidas/farmacología , Catálisis , Células Hep G2 , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Estructura Molecular , Nitroquinolinas/síntesis química , Nitroquinolinas/química , Nitroquinolinas/toxicidad , Paladio/química , Pruebas de Sensibilidad Parasitaria , Quinolonas/síntesis química , Quinolonas/química , Quinolonas/toxicidad , Tripanocidas/síntesis química , Tripanocidas/química , Tripanocidas/toxicidad , Trypanosoma brucei brucei/efectos de los fármacos
16.
Biomacromolecules ; 19(10): 4068-4074, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30204420

RESUMEN

Incorporating charged amino acid side chains in polypeptide polymer backbones to improve solubility usually leads to reduced secondary structuring. Here we show that highly water soluble (>15 mg.mL-1) ß-sheets can be obtained via nucleotide monophosphate grafting onto simple poly(γ-propargyl- L-glutamate) backbone. This synthetic methodology has been applied to the synthesis of thymidine-based nucleopolypeptides presenting stable ß-sheet conformation in aqueous solutions with pH values comprised between 4 and 8. These polymeric analogues of nucleoproteins exhibited selective interaction with simple DNA sequences displaying adenine.


Asunto(s)
ADN/química , ADN/metabolismo , Péptidos/química , Polímeros/química , Agua/química , Concentración de Iones de Hidrógeno , Iones , Modelos Moleculares , Estructura Molecular , Conformación Proteica en Lámina beta
17.
Chem Commun (Camb) ; 53(54): 7501-7504, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28628166

RESUMEN

Synthetic polypeptides are versatile polymers outstandingly relevant to prepare bioinspired materials. In this work, we present a new class of smart polypeptide polymers, called nucleopolypeptides, having lateral chains functionalized with thymidine nucleobases. Structural studies performed by circular dichroism have revealed that the secondary structure of the polymers was influenced by nucleotide interaction and DNA sequence variation affording a selective helix-to-beta sheet transition with oligo(AAAAA)6.


Asunto(s)
ADN/química , Péptidos/química , Dicroismo Circular , Estructura Secundaria de Proteína
18.
Polymers (Basel) ; 9(7)2017 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-30970954

RESUMEN

Polypeptide polymers can adopt natural protein secondary structures such as α-helices or ß-sheets, and this unique feature is at the origin of some intriguing physico⁻chemical properties. In this work, we present how side chain imidazoylation of a poly(l-lysine) scaffold affords the preparation of poly(histidine) counterparts exhibiting α-helix conformation. This structuring behavior is reversible and can be controlled by means of pH and or temperature changes.

19.
Chem Commun (Camb) ; 52(75): 11251-11254, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27711440

RESUMEN

Synthetic glycopolypeptides are versatile glycopolymers used to conceive bioinspired nanoassemblies. In this work, novel amphiphilic glycopolypeptides were designed to incorporate lactose or galactan in order to prepare polymeric nanoassemblies with sizes below 50 nm. The bioactivity of the two different outer surface sugar units was evaluated by defining glycan relative binding affinities to human galectins 1 and 3. A specific multivalent effect was found only for polymeric nanoparticles displaying galactan with a significant increase of the binding activity as compared to free glycan in solution. Such synthetic designs present great potential as therapeutic tools to address galectin related pathologies.


Asunto(s)
Galectinas/metabolismo , Glicopéptidos/metabolismo , Nanopartículas/metabolismo , Galectinas/química , Glicopéptidos/química , Lactosa/química , Lactosa/metabolismo , Microscopía de Fuerza Atómica , Nanopartículas/química , Tamaño de la Partícula , Polímeros/química , Polímeros/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Propiedades de Superficie
20.
Nanoscale ; 7(8): 3754-67, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25644780

RESUMEN

Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 ± 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 ± 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents, also working as "nano-thermometers".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...