Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hosp Infect ; 127: 44-50, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35738317

RESUMEN

BACKGROUND: While modelling of central-line-associated blood stream infection (CLABSI) risk factors is common, models that predict an impending CLABSI in real time are lacking. AIM: To build a prediction model which identifies patients who will develop a CLABSI in the ensuing 24 h. METHODS: We collected variables potentially related to infection identification in all patients admitted to the cardiac intensive care unit or cardiac ward at Boston Children's Hospital in whom a central venous catheter (CVC) was in place between January 2010 and August 2020, excluding those with a diagnosis of bacterial endocarditis. We created models predicting whether a patient would develop CLABSI in the ensuing 24 h. We assessed model performance based on area under the curve (AUC), sensitivity and false-positive rate (FPR) of models run on an independent testing set (40%). FINDINGS: A total of 104,035 patient-days and 139,662 line-days corresponding to 7468 unique patients were included in the analysis. There were 399 positive blood cultures (0.38%), most commonly with Staphylococcus aureus (23% of infections). Major predictors included a prior history of infection, elevated maximum heart rate, elevated maximum temperature, elevated C-reactive protein, exposure to parenteral nutrition and use of alteplase for CVC clearance. The model identified 25% of positive cultures with an FPR of 0.11% (AUC = 0.82). CONCLUSIONS: A machine-learning model can be used to predict 25% of patients with impending CLABSI with only 1.1/1000 of these predictions being incorrect. Once prospectively validated, this tool may allow for early treatment or prevention.


Asunto(s)
Bacteriemia , Infecciones Relacionadas con Catéteres , Cateterismo Venoso Central , Catéteres Venosos Centrales , Bacteriemia/diagnóstico , Bacteriemia/epidemiología , Infecciones Relacionadas con Catéteres/diagnóstico , Infecciones Relacionadas con Catéteres/epidemiología , Infecciones Relacionadas con Catéteres/etiología , Cateterismo Venoso Central/efectos adversos , Catéteres Venosos Centrales/efectos adversos , Catéteres Venosos Centrales/microbiología , Niño , Humanos , Aprendizaje Automático , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...