Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37908186

RESUMEN

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Lóbulo Frontal/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
2.
Alzheimers Dement ; 19(8): 3754-3759, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37102457

RESUMEN

INTRODUCTION: Accumulating evidence suggests that α-synuclein (αSyn) can modulate Alzheimer's disease (AD) pathology. The aim of this study was to evaluate the prevalence and clinical features associated with cerebrospinal fluid (CSF) αSyn detected by seed amplification assay (SAA) in AD. METHODS: Eighty AD patients with CSF AT(N) biomarker positivity (mean age 70.3 ± 7.3 years) and 28 non-AD age-matched controls were included. All subjects underwent standardized clinical assessment; CSF αSyn aggregates were detected by SAA. RESULTS: CSF was αSyn-SAA positive (αSyn+) in 36/80 AD patients (45%) and in 2/28 controls (7.1%). AD αSyn+ and αSyn- patients were comparable for age, disease severity, comorbidity profile, and CSF core biomarkers. AD αSyn+ presented a higher prevalence of atypical phenotypes and symptoms. CONCLUSIONS: Our findings demonstrate that concomitant CSF αSyn pathology is present in a significant proportion of AD patients starting in the early stages and can affect clinical presentation. Longitudinal studies are warranted to evaluate the significance for the disease course.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , alfa-Sinucleína/líquido cefalorraquídeo , Estudios Longitudinales , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo
4.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142123

RESUMEN

Genetic Creutzfeldt-Jakob disease (gCJD) associated with the V180I mutation in the prion protein (PrP) gene (PRNP) in phase with residue 129M is the most frequent cause of gCJD in East Asia, whereas it is quite uncommon in Caucasians. We report on a gCJD patient with the rare V180I-129V haplotype, showing an unusually long duration of the disease and a characteristic pathological PrP (PrPSc) glycotype. Family members carrying the mutation were fully asymptomatic, as commonly observed with this mutation. Neuropathological examination showed a lesion pattern corresponding to that commonly reported in Japanese V180I cases with vacuolization and gliosis of the cerebral cortexes, olfactory areas, hippocampus and amygdala. PrP was deposited with a punctate, synaptic-like pattern in the cerebral cortex, amygdala and olfactory tract. Western blot analyses of proteinase-K-resistant PrP showed the characteristic two-banding pattern of V180I gCJD, composed of mono- and un-glycosylated isoforms. In line with reports on other V180I cases in the literature, Real-Time Quaking Induced Conversion (RT-QuIC) analyses did not demonstrate the presence of seeding activity in the cerebrospinal fluid and olfactory mucosa, suggesting that this haplotype also may result in a reduced seeding efficiency of the pathological PrP. Further studies are required to understand the origin, penetrance, disease phenotype and transmissibility of 180I-129V haplotype in Caucasians.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Endopeptidasa K/metabolismo , Haplotipos , Humanos , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/metabolismo
6.
Transl Neurodegener ; 11(1): 37, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902902

RESUMEN

BACKGROUND: In patients with Parkinson's disease (PD), real-time quaking-induced conversion (RT-QuIC) detection of pathological α-synuclein (α-syn) in olfactory mucosa (OM) is not as accurate as in other α-synucleinopathies. It is unknown whether these variable results might be related to a different distribution of pathological α-syn in OM. Thus, we investigated whether nasal swab (NS) performed in areas with a different coverage by olfactory neuroepithelium, such as agger nasi (AN) and middle turbinate (MT), might affect the detection of pathological α-syn. METHODS: NS was performed in 66 patients with PD and 29 non-PD between September 2018 and April 2021. In 43 patients, cerebrospinal fluid (CSF) was also obtained and all samples were analyzed by RT-QuIC for α-syn. RESULTS: In the first round, 72 OM samples were collected by NS, from AN (NSAN) or from MT (NSMT), and 35 resulted positive for α-syn RT-QuIC, including 27/32 (84%) from AN, 5/11 (45%) from MT, and 3/29 (10%) belonging to the non-PD patients. Furthermore, 23 additional PD patients underwent NS at both AN and MT, and RT-QuIC revealed α-syn positive in 18/23 (78%) NSAN samples and in 10/23 (44%) NSMT samples. Immunocytochemistry of NS preparations showed a higher representation of olfactory neural cells in NSAN compared to NSMT. We also observed α-syn and phospho-α-syn deposits in NS from PD patients but not in controls. Finally, RT-QuIC was positive in 22/24 CSF samples from PD patients (92%) and in 1/19 non-PD. CONCLUSION: In PD patients, RT-QuIC sensitivity is significantly increased (from 45% to 84%) when NS is performed at AN, indicating that α-syn aggregates are preferentially detected in olfactory areas with higher concentration of olfactory neurons. Although RT-QuIC analysis of CSF showed a higher diagnostic accuracy compared to NS, due to the non-invasiveness, NS might be considered as an ancillary procedure for PD diagnosis.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , Mucosa Olfatoria/química , Mucosa Olfatoria/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Olfato , alfa-Sinucleína/líquido cefalorraquídeo
7.
Eur J Neurol ; 29(8): 2431-2438, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524506

RESUMEN

BACKGROUND AND PURPOSE: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) has a high degree of sensitivity and specificity for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) and this has led to its being included in revised European CJD Surveillance Network diagnostic criteria for sCJD. As CSF RT-QuIC becomes more widely established, it is crucial that the analytical performance of individual laboratories is consistent. The aim of this ring-trial was to ascertain the degree of concordance between European countries undertaking CSF RT-QuIC. METHODS: Ten identical CSF samples, seven from probable or neuropathologically confirmed sCJD and three from non-CJD cases, were sent to 13 laboratories from 11 countries for RT-QuIC analysis. A range of instrumentation and different recombinant prion protein substrates were used. Each laboratory analysed the CSF samples blinded to the diagnosis and reported the results as positive or negative. RESULTS: All 13 laboratories correctly identified five of the seven sCJD cases and the remaining two sCJD cases were identified by 92% of laboratories. Of the two sCJD cases that were not identified by all laboratories, one had a disease duration >26 months with a negative 14-3-3, whilst the remaining case had a 4-month disease duration and a positive 14-3-3. A single false positive CSF RT-QuIC result was observed in this study. CONCLUSIONS: This study shows that CSF RT-QuIC demonstrates an excellent concordance between centres, even when using a variety of instrumentation, recombinant prion protein substrates and CSF volumes. The adoption of CSF RT-QuIC by all CJD surveillance centres is recommended.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Proteínas Priónicas , Priones/líquido cefalorraquídeo , Proteínas Recombinantes , Sensibilidad y Especificidad
8.
Front Aging Neurosci ; 14: 848991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401151

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials.

9.
Brain ; 144(4): 1118-1126, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855335

RESUMEN

Isolated REM sleep behaviour disorder (RBD) is an early-stage α-synucleinopathy in most, if not all, affected subjects. Detection of pathological α-synuclein in peripheral tissues of patients with isolated RBD may identify those progressing to Parkinson's disease, dementia with Lewy bodies or multiple system atrophy, with the ultimate goal of testing preventive therapies. Real-time quaking-induced conversion (RT-QuIC) provided evidence of α-synuclein seeding activity in CSF and olfactory mucosa of patients with α-synucleinopathies. The aim of this study was to explore RT-QuIC detection of α-synuclein aggregates in olfactory mucosa of a large cohort of subjects with isolated RBD compared to patients with Parkinson's disease and control subjects. This cross-sectional case-control study was performed at the Medical University of Innsbruck, Austria, the Hospital Clinic de Barcelona, Spain, and the University of Verona, Italy. Olfactory mucosa samples obtained by nasal swab in 63 patients with isolated RBD, 41 matched Parkinson's disease patients and 59 matched control subjects were analysed by α-synuclein RT-QuIC in a blinded fashion at the University of Verona, Italy. Median age of patients with isolated RBD was 70 years, 85.7% were male. All participants were tested for smell, autonomic, cognitive and motor functions. Olfactory mucosa was α-synuclein RT-QuIC positive in 44.4% isolated RBD patients, 46.3% Parkinson's disease patients and 10.2% control subjects. While the sensitivity for isolated RBD plus Parkinson's disease versus controls was 45.2%, specificity was high (89.8%). Among isolated RBD patients with positive α-synuclein RT-QuIC, 78.6% had olfactory dysfunction compared to 21.4% with negative α-synuclein RT-QuIC (P < 0.001). The extent of olfactory dysfunction was more severe in isolated RBD patients positive than negative for olfactory mucosa a-synuclein RT-QuIC (P < 0.001). We provide evidence that the α-synuclein RT-QuIC assay enables the molecular detection of neuronal α-synuclein aggregates in olfactory mucosa of patients with isolated RBD and Parkinson's disease. Although the overall sensitivity was moderate in this study, nasal swabbing is attractive as a simple, non-invasive test and might be useful as part of a screening battery to identify subjects in the prodromal stages of α-synucleinopathies. Further studies are needed to enhance sensitivity, and better understand the temporal dynamics of α-synuclein seeding in the olfactory mucosa and spreading to other brain areas during the progression from isolated RBD to overt α-synucleinopathy, as well the impact of timing, disease subgroups and sampling technique on the overall sensitivity.


Asunto(s)
Mucosa Olfatoria/metabolismo , Enfermedad de Parkinson/patología , Trastorno de la Conducta del Sueño REM/patología , alfa-Sinucleína/análisis , Anciano , Biomarcadores/análisis , Biomarcadores/metabolismo , Estudios de Casos y Controles , Estudios Transversales , Diagnóstico Precoz , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/metabolismo , Sensibilidad y Especificidad , alfa-Sinucleína/metabolismo
10.
Brain Commun ; 3(2): fcab045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33870192

RESUMEN

In patients with suspected dementia with Lewy bodies, the detection of the disease-associated α-synuclein in easily accessible tissues amenable to be collected using minimally invasive procedures remains a major diagnostic challenge. This approach has the potential to take advantage of modern molecular assays for the diagnosis of α-synucleinopathy and, in turn, to optimize the recruitment and selection of patients in clinical trials, using drugs directed at counteracting α-synuclein aggregation. In this study, we explored the diagnostic accuracy of α-synuclein real-time quaking-induced conversion assay by testing olfactory mucosa and CSF in patients with a clinical diagnosis of probable (n = 32) or prodromal (n = 5) dementia with Lewy bodies or mixed degenerative dementia (dementia with Lewy bodies/Alzheimer's disease) (n = 6). Thirty-eight patients with non-α-synuclein-related neurodegenerative and non-neurodegenerative disorders, including Alzheimer's disease (n = 10), sporadic Creutzfeldt-Jakob disease (n = 10), progressive supranuclear palsy (n = 8), corticobasal syndrome (n = 1), fronto-temporal dementia (n = 3) and other neurological conditions (n = 6) were also included, as controls. All 81 patients underwent olfactory swabbing while CSF was obtained in 48 participants. At the initial blinded screening of olfactory mucosa samples, 38 out of 81 resulted positive while CSF was positive in 19 samples out of 48 analysed. After unblinding of the results, 27 positive olfactory mucosa were assigned to patients with probable dementia with Lewy bodies, five with prodromal dementia with Lewy bodies and three to patients with mixed dementia, as opposed to three out 38 controls. Corresponding results of CSF testing disclosed 10 out 10 positive samples in patients with probable dementia with Lewy bodies and six out of six with mixed dementia, in addition to three out of 32 for controls. The accuracy among results of real-time quaking-induced conversion assays and clinical diagnoses was 86.4% in the case of olfactory mucosa and 93.8% for CSF. For the first time, we showed that α-synuclein real-time quaking-induced conversion assay detects α-synuclein aggregates in olfactory mucosa of patients with dementia with Lewy bodies and with mixed dementia. Additionally, we provided preliminary evidence that the combined testing of olfactory mucosa and CSF raised the concordance with clinical diagnosis potentially to 100%. Our results suggest that nasal swabbing might be considered as a first-line screening procedure in patients with a diagnosis of suspected dementia with Lewy bodies followed by CSF analysis, as a confirmatory test, when the result in the olfactory mucosa is incongruent with the initial clinical diagnosis.

11.
Ann Clin Transl Neurol ; 7(11): 2262-2271, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33185334

RESUMEN

OBJECTIVE: Real-time quaking-induced conversion (RT-QuIC) assays detect prion-seeding activity in a variety of human biospecimens, including cerebrospinal fluid and olfactory mucosa swabs. The assay has shown high diagnostic accuracy in patients with prion disorders. Recently, advances in these tests have led to markedly improved diagnostic sensitivity and reduced assay times. Accordingly, an algorithm has been proposed that entails the use of RT-QuIC analysis of both sample types to diagnose sporadic Creutzfeldt-Jakob disease with nearly 100% accuracy. Here we present a multi-center evaluation (ring trial) of the reproducibility of these improved "second generation" RT-QuIC assays as applied to these diagnostic specimens. METHODS: Cerebrospinal fluid samples were analyzed from subjects with sporadic Creutzfeldt-Jakob (n = 55) or other neurological diseases (n = 45) at multiple clinical centers. Olfactory mucosa brushings collected by multiple otolaryngologists were obtained from nine sporadic Creutzfeldt-Jakob disease cases and 19 controls. These sample sets were initially tested blindly by RT-QuIC by a coordinating laboratory, recoded, and then sent to five additional testing laboratories for blinded ring trial testing. RESULTS: Unblinding of the results by a third party indicated 98-100% concordance between the results obtained by the testing of these cerebrospinal fluid and nasal brushings at the six laboratories. INTERPRETATION: This second-generation RT-QuIC assay is highly transferrable, reproducible, and therefore robust for the diagnosis of sporadic Creutzfeldt-Jakob disease in clinical practice.


Asunto(s)
Bioensayo/normas , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Técnicas de Diagnóstico Neurológico/normas , Mucosa Olfatoria/metabolismo , Priones/líquido cefalorraquídeo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
12.
Ann Clin Transl Neurol ; 7(6): 932-944, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32538552

RESUMEN

OBJECTIVE: The detection of prion seeding activity in CSF and olfactory mucosal brushings using real-time quaking-induced conversion assays allows highly accurate clinical diagnosis of sporadic Creutzfeldt-Jakob disease. To gauge transmission risks associated with these biospecimens and their testing, we have bioassayed prion infectivity levels in patients' brain tissue, nasal brushings, and CSF, and assessed the pathogenicity of amplified products of real-time quaking-induced conversion assays seeded with Creutzfeldt-Jakob disease prions. METHODS: We obtained olfactory mucosal brushings and CSF from patients with a final diagnosis of sporadic Creutzfeldt-Jakob disease subtype MM1 (n = 3). Samples were inoculated intracerebrally into Tg66 transgenic mice that overexpress the homologous human 129M prion protein. The mice were evaluated for clinical, neuropathological, and biochemical evidence of prion infection. RESULTS: Patients' brain tissue at 102 to 105 fold dilutions affected 47/48 Tg66 mice. In contrast, maximum acutely tolerable doses of insoluble pellets from their olfactory mucosa brushings caused evidence of prion disease in only 4/28 inoculated mice, and no effects were seen with 10-fold dilutions. No clinical prion disease was observed in mice inoculated with antemortem CSF samples or prion-seeded real-time quaking-induced conversion assay products. INTERPRETATION: Pellets from patients' olfactory mucosa brushings had ≥10,000-fold lower infectivity per unit volume than brain tissue, while CSF lacked detectable infectivity. Nonetheless, the results suggest that appropriate precautions may be warranted in surgical interventions involving the olfactory areas. The lack of pathogenic infectivity in the real-time quaking-induced conversion assay products provides evidence that the assay does not replicate biohazardous prions in vitro.


Asunto(s)
Química Encefálica , Encéfalo , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/transmisión , Mucosa Olfatoria/química , Proteínas Priónicas/análisis , Proteínas Priónicas/líquido cefalorraquídeo , Animales , Autopsia , Humanos , Ratones , Ratones Transgénicos , Punción Espinal
13.
Front Neurosci ; 14: 145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194369

RESUMEN

The olfactory neuroepithelium is located in the upper vault of the nasal cavity, lying on the olfactory cleft and projecting into the dorsal portion of the superior and middle turbinates beyond the mid-portion of the nasal septum. It is composed of a variety of cell types including olfactory sensory neurons, supporting glial-like cells, microvillar cells, and basal stem cells. The cells of the neuroepithelium are often intermingled with respiratory and metaplastic epithelial cells. Olfactory neurons undergo a constant self-renewal in the timespan of 2-3 months; they are directly exposed to the external environment, and thus they are vulnerable to physical and chemical injuries. The latter might induce metabolic perturbations and ultimately be the cause of cell death. However, the lifespan of olfactory neurons is biologically programmed, and for this reason, these cells have an accelerated metabolic cycle leading to an irreversible apoptosis. These characteristics make these cells suitable for research related to nerve cell degeneration and aging. Recent studies have shown that a non-invasive and painless olfactory brushing procedure allows an efficient sampling from the olfactory neuroepithelium. This approach allows to detect the pathologic prion protein in patients with sporadic Creutzfeldt-Jakob disease, using the real-time quaking-induced conversion assay. Investigating the expression of all the proteins associated to neurodegeneration in the cells of the olfactory mucosa is a novel approach toward understanding the pathogenesis of human neurodegenerative diseases. Our aim was to investigate the expression of α-synuclein, ß-amyloid, tau, and TDP-43 in the olfactory neurons of normal subjects. We showed that these proteins that are involved in neurodegenerative diseases are expressed in olfactory neurons. These findings raise the question on whether a relationship exists between the mechanisms of protein aggregation that occur in the olfactory bulb during the early stage of the neurodegenerative process and the protein misfolding occurring in the olfactory neuroepithelium.

14.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019068

RESUMEN

The early and accurate in vivo diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is essential in order to differentiate CJD from treatable rapidly progressive dementias. Diagnostic investigations supportive of clinical CJD diagnosis include magnetic resonance imaging (MRI), electroencephalogram (EEG), 14-3-3 protein detection, and/or real-time quaking-induced conversion (RT-QuIC) assay positivity in the cerebrospinal fluid (CSF) or in other tissues. The total CSF tau protein concentration has also been used in a clinical setting for improving the CJD diagnostic sensitivity and specificity. We analyzed 182 CSF samples and 42 olfactory mucosa (OM) brushings from patients suspected of having sCJD with rapidly progressive dementia (RPD), in order to determine the diagnostic accuracy of 14-3-3, the total tau protein, and the RT-QuIC assay. A probable and definite sCJD diagnosis was assessed in 102 patients. The RT-QuIC assay on the CSF samples showed a 100% specificity and a 96% sensitivity, significantly higher compared with 14-3-3 (84% sensitivity and 46% specificity) and tau (85% sensitivity and 70% specificity); however, the combination of RT-QuIC testing of the CSF and OM samples resulted in 100% sensitivity and specificity, proving a significantly higher accuracy of RT-QuIC compared with the surrogate biomarkers in the diagnostic setting of patients with RPD. Moreover, we showed that CSF blood contamination or high protein levels might interfere with RT-QuIC seeding. In conclusion, we provided further evidence that the inclusion of an RT-QuIC assay of the CSF and OM in the diagnostic criteria for sCJD has radically changed the clinical approach towards the diagnosis.


Asunto(s)
Proteínas 14-3-3/líquido cefalorraquídeo , Biomarcadores/análisis , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagen , Priones/genética , Proteínas tau/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mucosa Olfatoria , Estudios Prospectivos , Sensibilidad y Especificidad
15.
Ann Clin Transl Neurol ; 6(10): 2120-2126, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31599499

RESUMEN

We applied RT-QuIC assay to detect α-synuclein aggregates in cerebrospinal fluid (CSF) of patients with suspected Creutzfeldt-Jakob disease who had a neuropathological diagnosis of dementia with Lewy bodies (DLB) (n = 7), other neurodegenerative diseases with α-synuclein mixed pathology (n = 20), or without Lewy-related pathology (n = 49). The test had a sensitivity of 92.9% and specificity of 95.9% in distinguishing α-synucleinopathies from non-α-synucleinopathies. When performed in the CSF of patients with DLB (n = 36), RT-QuIC was positive in 17/20 with probable DLB, 0/6 with possible DLB, and 0/10 with Alzheimer disease. These results indicate that RT-QuIC for α-synuclein is an accurate test for DLB diagnosis.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Bioensayo/normas , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , alfa-Sinucleína/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Síndrome de Creutzfeldt-Jakob/diagnóstico , Diagnóstico Diferencial , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico , Sensibilidad y Especificidad
16.
J Alzheimers Dis ; 66(1): 219-227, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30282368

RESUMEN

Cerebrospinal fluid (CSF) biomarkers are currently included in the diagnostic criteria for Alzheimer's disease (AD), in particular, decreased concentrations of amyloid-ß peptide 1-42 (Aß42) in the CSF, coupled with increased levels of tau and phosphorylated tau proteins, are supportive of AD diagnosis. To date, the quantification of Aß42 levels with antibody-dependent immunoassay shows a marked variability among different laboratories and is also affected by different pre-analytical factors, suggesting that part of Aß42 peptides might be aggregated and thus undetected by antibodies. To bypass an antibody-dependent measurement, we determined the Aß40 and Aß42 levels by immunoblot. We analyzed CSF samples from 35 patients with clinical diagnosis of probable AD and from 15 age-matched normal controls; CSF Aß levels were determined by two different ELISA kits and by immunoblot analysis. Aß40 levels measured by ELISA were comparable to those obtained by immunoblot, whereas CSF concentrations of Aß42 measured by ELISA were significantly lower compared to values obtained by immunoblot quantification. Biochemical analysis, following 1D- and 2D-PAGE analysis, showed that the qualitative composition of Aß peptides in the CSF is similar in AD and controls but different from that of AD brain tissues. Moreover, sedimentation velocity in sucrose gradient of CSF and brain homogenate from AD demonstrated that Aß42 in CSF is different from Aß42 in brain in terms of solubility and aggregation state.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Electroforesis en Gel Bidimensional/normas , Fragmentos de Péptidos/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Western Blotting/métodos , Western Blotting/normas , Electroforesis en Gel Bidimensional/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/normas , Humanos
17.
Prog Mol Biol Transl Sci ; 150: 389-407, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28838671

RESUMEN

Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrPSc). The pathological and transmissible properties of PrPSc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrPSc, biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrPSc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrPSc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrPSc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrPSc PK-resistant fragment. An additional PrPSc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrPSc with an electrophoretic ladder like pattern. Additionally, the presence of PrPSc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrPSc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrPSc biochemical analysis in human and animal prion disorders. Further, we show that PrPSc glycotypes observed in CJD share similarities with PrPSc in bovine spongiform encephalopathy forms (BSE).


Asunto(s)
Priones/metabolismo , Animales , Bovinos , Electroforesis en Gel Bidimensional , Glicosilfosfatidilinositoles/metabolismo , Humanos , Mutación/genética , Péptidos/metabolismo , Enfermedades por Prión/metabolismo , Priones/genética
18.
Ann Clin Transl Neurol ; 4(2): 139-144, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28168213

RESUMEN

Real-Time Quaking-Induced Conversion (RT-QuIC) testing of human cerebrospinal fluid (CSF) is highly sensitive and specific in discriminating sporadic CJD patients from those without prion disease. Here, using CSF samples from 113 CJD and 64 non-prion disease patients, we provide the first direct and concurrent comparison of our improved RT-QuIC assay to our previous assay, which is similar to those commonly used internationally for CJD diagnosis. This extended comparison demonstrated a ~21% increase in diagnostic sensitivity, a 2-day reduction in average detection time, and 100% specificity.

19.
JAMA Neurol ; 74(2): 155-162, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27942718

RESUMEN

Importance: Early and accurate in vivo diagnosis of Creutzfeldt-Jakob disease (CJD) is necessary for quickly distinguishing treatable from untreatable rapidly progressive dementias and for future therapeutic trials. This early diagnosis is becoming possible using the real-time quaking-induced conversion (RT-QuIC) seeding assay, which detects minute amounts of the disease-specific pathologic prion protein in cerebrospinal fluid (CSF) or olfactory mucosa (OM) samples. Objective: To develop an algorithm for accurate and early diagnosis of CJD by using the RT-QuIC assay on CSF samples, OM samples, or both. Design, Setting, and Participants: In this case-control study, samples of CSF and OM were collected from 86 patients with a clinical diagnosis of probable (n = 51), possible (n = 24), or suspected (n = 11) CJD and 104 negative control samples (54 CSF and 50 OM). The CSF and OM samples were analyzed using conventional RT-QuIC. The CSF samples underwent further testing using improved RT-QuIC conditions. In addition, the diagnostic performance of a novel, easy-to-use, gentle flocked swab for sampling of OM was evaluated. Data were collected from January 1 to June 30, 2015. Main Outcome and Measures: Correlations between RT-QuIC results and the final diagnosis of recruited patients. Results: Among the 86 patients (37 men [43%] and 49 women [57%]; mean [SD] age, 65.7 [11.5] years) included for analysis, all 61 patients with sporadic CJD had positive RT-QuIC findings using OM or CSF samples or both for an overall RT-QuIC diagnostic sensitivity of 100% (95% CI, 93%-100%). All patients with a final diagnosis of non-prion disease (71 CSF and 67 OM samples) had negative RT-QuIC findings for 100% specificity (95% CI, 94%-100%). Of 8 symptomatic patients with various mutations causing CJD or Gerstmann-Sträussler-Scheinker syndrome, 6 had positive and 2 had negative RT-QuIC findings for a sensitivity of 75% (95% CI, 36%-96%). Conclusions and Relevance: A proposed diagnostic algorithm for sporadic CJD combines CSF and OM RT-QuIC testing to provide virtually 100% diagnostic sensitivity and specificity in the clinical phase of the disease.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Priones/líquido cefalorraquídeo , Anciano , Algoritmos , Estudios de Casos y Controles , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
20.
Ann Neurol ; 80(4): 629-32, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27501375

RESUMEN

An asymptomatic 74-year-old woman, on follow-up for a carotid body tumor, showed magnetic resonance imaging (MRI) focal restricted diffusion confined to the left temporal and occipital cortices. Thirteen months later, diffusion-weighted images revealed a bilateral cortical ribbon sign involving all lobes. After 1 month, the patient developed gait instability and cognitive decline rapidly evolving to severe dementia and death within 3 months. Prion protein gene sequence, molecular, and neuropathological studies confirmed the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 subtype. Here we show the kinetics of MRI changes and prion spreading in preclinical sCJD MM1. Ann Neurol 2016;80:629-632.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Síndrome de Creutzfeldt-Jakob/diagnóstico , Progresión de la Enfermedad , Anciano , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagen , Síndrome de Creutzfeldt-Jakob/fisiopatología , Resultado Fatal , Femenino , Humanos , Imagen por Resonancia Magnética , Síntomas Prodrómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA