Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(8): e0237998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32817691

RESUMEN

Among the mineral nutrients that are required for plant metabolism, iron (Fe) and sulphur (S) play a central role as both elements are needed for the activity of several proteins involved in essential cellular processes. A combination of physiological, biochemical and molecular approaches was employed to investigate how S availability influences plant response to Fe deficiency, using the model plant Arabidopsis thaliana. We first observed that chlorosis symptom induced by Fe deficiency was less pronounced when S availability was scarce. We thus found that S deficiency inhibited the Fe deficiency induced expression of several genes associated with the maintenance of Fe homeostasis. This includes structural genes involved in Fe uptake (i.e. IRT1, FRO2, PDR9, NRAMP1) and transport (i.e. FRD3, NAS4) as well as a subset of their upstream regulators, namely BTS, PYE and the four clade Ib bHLH. Last, we found that the over accumulation of manganese (Mn) in response to Fe shortage was reduced under combined Fe and S deficiencies. These data suggest that S deficiency inhibits the Fe deficiency dependent induction of the Fe uptake machinery. This in turn limits the transport into the root and the plant body of potentially toxic divalent cations such as Mn and Zn, thus limiting the deleterious effect of Fe deprivation.


Asunto(s)
Arabidopsis/metabolismo , Deficiencias de Hierro , Azufre/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Hierro/metabolismo , Transcripción Genética
2.
New Phytol ; 228(3): 1038-1054, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32463943

RESUMEN

In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing. To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. This revealed an essential sequence for NRT2.1 activity, located between the residues 494 and 513. Using a phospho-proteomic approach, we found that this sequence contains one phosphorylation site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins. Finally, the relative level of serine 501 phosphorylation was found to be increased by ammonium nitrate in wild-type plants, leading to the inactivation of NRT2.1 and to a decrease in high affinity nitrate transport into roots. Altogether, these observations reveal a new and essential mechanism for the regulation of NRT2.1 activity.


Asunto(s)
Proteínas de Transporte de Anión , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...