Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(21): 7113-7128, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36194262

RESUMEN

DinJ-YafQ is a bacterial type II TA system formed by the toxin RNase YafQ and the antitoxin protein DinJ. The activity of YafQ and DinJ has been rigorously studied in Escherichia coli, but little has been reported about orthologous systems identified in different microorganisms. In this work, we report an in vitro and in vivo functional characterization of YafQ and DinJ identified in two different strains of Lacticaseibacillus paracasei and isolated as recombinant proteins. While DinJ is identical in both strains, the two YafQ orthologs differ only for the D72G substitution in the catalytic site. Both YafQ orthologs digest ribosomal RNA, albeit with different catalytic efficiencies, and their RNase activity is neutralized by DinJ. We further show that DinJ alone or in complex with YafQ can bind cooperatively to a 28-nt inverted repeat overlapping the -35 element of the TA operon promoter. Atomic force microscopy imaging of DinJ-YafQ in complex with DNA harboring the cognate site reveals the formation of different oligomeric states that prevent the binding of RNA polymerase to the promoter. A single amino acid substitution (R13A) within the RHH DNA-binding motif of DinJ is sufficient to abolish DinJ and DinJ-YafQ DNA binding in vitro. In vivo experiments confirm the negative regulation of the TA promoter by DinJ and DinJ-YafQ and unveil an unexpected high expression-related toxicity of the gfp reporter gene. A model for the binding of two YafQ-(DinJ)2-YafQ tetramers to the promoter inverted repeat showing the absence of protein-protein steric clash is also presented. KEY POINTS: • The RNase activity of L. paracasei YafQ toxin is neutralized by DinJ antitoxin. • DinJ and DinJ-YafQ bind to an inverted repeat to repress their own promoter. • The R13A mutation of DinJ abolishes DNA binding of both DinJ and DinJ-YafQ.


Asunto(s)
Antitoxinas , Proteínas Bacterianas , Toxinas Bacterianas , Lacticaseibacillus paracasei , Antitoxinas/metabolismo , Toxinas Bacterianas/genética , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , ARN Ribosómico , Proteínas Bacterianas/genética
2.
Methods Protoc ; 4(4)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34698227

RESUMEN

A large number of bacterial toxin-antitoxin (TA) systems have been identified so far and different experimental approaches have been explored to investigate their activity and regulation both in vivo and in vitro. Nonetheless, a common feature of these methods is represented by the difficulty in cell transformation, culturing, and stability of the transformants, due to the expression of highly toxic proteins. Recently, in dealing with the type I Lpt/RNAII and the type II YafQ/DinJ TA systems, we encountered several of these problems that urged us to optimize methodological strategies to study the phenotype of recombinant Escherichia coli host cells. In particular, we have found conditions to tightly repress toxin expression by combining the pET expression system with the E. coli C41(DE3) pLysS strain. To monitor the RNase activity of the YafQ toxin, we developed a fluorescence approach based on Thioflavin-T which fluoresces brightly when complexed with bacterial RNA. Fluorescence microscopy was also applied to reveal loss of membrane integrity associated with the activity of the type I toxin Lpt, by using DAPI and ethidium bromide to selectively stain cells with impaired membrane permeability. We further found that atomic force microscopy can readily be employed to characterize toxin-induced membrane damages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...