Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Transl Res ; 12(5): 478-487, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30963423

RESUMEN

We have shown previously that during myocardial ischemia/reperfusion (MI/R), toll-like receptor 2 (TLR2) signaling regulates connexin 43 (Cx43) subcellular localization and function and dampens arrhythmia formation. We aimed to identify sites capable of TLR2-dependent redox modification within Cx43. Post-ischemic TLR2-/- or wild-type (WT) mouse hearts were analyzed by OxICAT. Cx43 was mutated to exclude redox modification and transfected into HL-1 cardiomyocytes (CM) that were challenged with a TLR2 agonist. We identified Cys260 of Cx43 to be susceptible to reversible oxidation MI/R; TLR2-/- leads to reduced H2O2 production in post-ischemic isolated mitochondria and subsequently reduced oxidation of Cx43 at Cys260. Cx43 was dephosphorylated in WT, while phosphorylation was preserved in TLR2-/-. Mutation of Cx43 (C260A) and lentiviral transfection in HL-1 CM accelerated pacemaker activity and reduced activity after TLR2 ligand stimulation. We here provide evidence for TLR2-dependent reversible oxidation of Cx43 at Cys260, which led to decreased Cx43 phosphorylation and affected CM pacemaker frequency and intercellular communication.


Asunto(s)
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Frecuencia Cardíaca , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Receptor Toll-Like 2/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Comunicación Celular , Línea Celular , Conexina 43/deficiencia , Conexina 43/genética , Cisteína , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/patología , Oxidación-Reducción , Fosforilación , Transducción de Señal , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética
2.
Cell Metab ; 27(5): 1026-1039.e6, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606596

RESUMEN

Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , MicroARNs/genética , Mitocondrias , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animales , Proteínas de Unión al Calcio , Diferenciación Celular/genética , Células Cultivadas , Factores de Transcripción MEF2/genética , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Familia de Multigenes , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología
3.
Medchemcomm ; 8(3): 657-661, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108783

RESUMEN

By probing the quinone substrate binding site of mitochondrial complex I with a focused set of quinazoline-based compounds, we identified substitution patterns as being critical for the observed inhibition. The structure activity relationship study also resulted in the discovery of the quinazoline 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (EVP4593) as a highly potent inhibitor of the multisubunit membrane protein. EVP4593 specifically and effectively reduces the mitochondrial complex I-dependent respiration with no effect on the respiratory chain complexes II-IV. Similar to established Q-site inhibitors, EVP4593 elicits the release of reactive oxygen species at the flavin site of mitochondrial complex I. Recently, EVP4593 was nominated as a lead compound for the treatment of Huntingtons disease. Our results challenge the postulated primary mode-of-action of EVP4593 as an inhibitor of NF-κB pathway activation and/or store-operated calcium influx.

4.
Free Radic Biol Med ; 99: 43-53, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27474449

RESUMEN

Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn2+ ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (IIQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn2+ and different respiratory chain inhibitors led to a dynamically increasing H2O2emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca2+ increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle.


Asunto(s)
Cloruros/farmacología , Ciclo del Ácido Cítrico/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Peróxido de Hidrógeno/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Compuestos de Manganeso/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Canales de Calcio/metabolismo , Cloruro de Calcio/farmacología , Ciclo del Ácido Cítrico/fisiología , Ciclosporina/farmacología , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/fisiología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Oxidorreductasas/metabolismo , Permeabilidad/efectos de los fármacos , Ratas , Compuestos de Rutenio/farmacología , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Superóxidos/metabolismo , Ubiquinona/metabolismo
5.
Arch Biochem Biophys ; 580: 75-83, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26116786

RESUMEN

Manganese-induced toxicity has been recently associated with an increased ROS generation from mitochondrial complex II (succinate:ubiquinone oxidoreductase). To achieve a deeper mechanistic understanding how divalent manganese ions (Mn(2+)) could stimulate mitochondrial ROS production we performed investigations with bovine heart submitochondrial particles (SMP). In succinate fueled SMP, the Mn(2+) induced hydrogen peroxide (H2O2) production was blocked by the specific complex II ubiquinone binding site (IIQ) inhibitor atpenin A5 while a further downstream block at complex III increased the rate markedly. This suggests that site IIQ was the source of the reactive oxygen species. Moreover, Mn(2+) ions also accelerated the rate of superoxide dismutation, explaining the general increase in the measured rates of H2O2 production and an attenuation of direct superoxide detection.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Peróxido de Hidrógeno/metabolismo , Manganeso/farmacología , Membranas Mitocondriales/efectos de los fármacos , Partículas Submitocóndricas/efectos de los fármacos , Animales , Cationes Bivalentes , Bovinos , Complejo III de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Piridonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Partículas Submitocóndricas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Superóxido Dismutasa/metabolismo , Ubiquinona/antagonistas & inhibidores , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...