Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FASEB J ; 34(3): 3874-3883, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944399

RESUMEN

The ability of solar ultraviolet (UV) to induce skin cancer and photoaging is well recognized. The effect of the infrared (IR) and visible light (Vis) components of solar radiation on skin and their interaction with UV is less well known. This study compared the effects of physiologically relevant doses of complete (UV + Vis + IR) solar-simulated light and its individual components on matched primary dermal fibroblasts and epidermal keratinocytes from human donors on three biomarkers of cellular damage (reactive oxygen species (ROS) generation, mitochondrial DNA (mtDNA), and nuclear DNA (nDNA) damage). There was a greater induction of ROS, mtDNA, and nDNA damage with the inclusion of the visible and IR components of solar-simulated light in primary fibroblast cells compared to primary keratinocytes (P < .001). Experiments using exposure to specific components of solar light alone or in combination showed that the UV, Vis, and IR components of solar light synergistically increased ROS generation in primary fibroblasts but not primary keratinocytes (P < .001). Skin cell lines were used to confirm these findings. These observations have important implications for different skin cell type responses to the individual and interacting components of solar light and therefore photodamage mechanisms and photoprotection interventions.


Asunto(s)
Biomarcadores/metabolismo , Rayos Infrarrojos , Queratinocitos/efectos de la radiación , Luz , Piel/citología , Rayos Ultravioleta , Células Cultivadas , Ensayo Cometa , ADN/metabolismo , ADN Mitocondrial/efectos de la radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Queratinocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
J Control Release ; 273: 13-20, 2018 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-29355621

RESUMEN

Monoclonal antibodies (mAbs), which are now more frequently administered by subcutaneous (SC) injection rather than intravenously, have become a tremendously successful drug format across a wide range of therapeutic areas. Preclinical evaluations of mAbs to be administered by SC injection are typically performed in species such as mice, rats, minipigs, and cynomolgus monkeys to obtain critical information regarding formulation performance and prediction of PK/PD outcomes needed to select clinical doses for first-in-human studies. Despite extensive efforts, no preclinical model has been identified to date that accurately predicts clinical outcomes for these SC injections. We have addressed this deficiency with a novel in vitro instrument, termed Scissor, to model events occurring at the SC injection site and now further validated this approach using a set of eight mAbs for which clinical PK/PD outcomes have been obtained. Diffusion of these mAbs from the Scissor system injection cartridge into a large volume physiological buffer, used to emulate mAb movement from the SC injection site into the systemic circulation, provided distinct profiles when monitored over a 6h period. Curve-fitting analysis of these profiles using the Hill equation identified parameters that were used, along with physicochemical properties for each mAb, in a partial least squares analysis to define a relationship between molecule and formulation properties with clinical PK outcomes. The results demonstrate that parameters of protein charge at neutral pH and isoelectric point (pI) along with combined formulation properties such as viscosity and mAb concentration can dictate the movement of the mAb from the injection cartridge to infinite sink compartment. Examination of profile characteristics of this movement provided a strong predictive correlation for these eight mAbs. Together, this approach demonstrates the feasibility of this in vitro modelling strategy as a tool to identify drug and formulation properties that can define the performance of SC injected medicines and provide the potential for predicting clinical outcomes that could be useful for formulation selection and a first-in-human clinical dosing strategy.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Sistemas de Liberación de Medicamentos , Modelos Biológicos , Animales , Disponibilidad Biológica , Humanos , Inyecciones Subcutáneas , Macaca fascicularis , Ratones , Ratas , Porcinos , Porcinos Enanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...