Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 108: 39-54, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35227931

RESUMEN

Mutable collagenous tissues (MCTs) from echinoderms (e.g., sea stars, sea urchins) possess the remarkable ability to change their mechanical properties rapidly and reversibly thanks to the release of effector molecules regulating the number of cross-links between collagen fibrils. Among these effector molecules, tensilin has been identified as a stiffening factor in sea cucumber MCTs. Since its discovery and description twenty years ago, tensilin orthologs have been identified in a few sea cucumber species but no novel information about its molecular mode of action has been reported. In this study, using a combination of in silico analyses, we identified the tensilin present in the dermis of Holothuria forskali, Hf-(D)Tensilin. Anti-peptide antibodies showed that this protein is localised in the secretory granules of type 2 juxtaligamental-like cells, a MCT specific cell type. We then used the bacterium E. coli to produce recombinantly Hf-(D)Tensilin and confirmed its stiffening effect on pieces of the dermis and its aggregation effect on collagen fibrils extracted from the sea cucumber dermis. To investigate how tensilin can cross-bridge collagen fibrils, truncated recombinant tensilins were also produced and used in combination with various compounds. Results suggest that two types of interactions contribute to the aggregation effect of tensilin on the fibrils: (1) the N-terminal NTR TIMP like domain of the protein interacts strongly with sulfated GAGs attached to the surface of the collagen fibrils, and (2) the C-terminal part of the protein is involved in its dimerisation/oligomerisation through ionic but possibly also cation-π and hydrophobic interactions.


Asunto(s)
Pepinos de Mar , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Tejido Conectivo/metabolismo , Escherichia coli/metabolismo , Pepinos de Mar/genética , Pepinos de Mar/metabolismo
2.
Beilstein J Nanotechnol ; 9: 2071-2086, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202680

RESUMEN

Background: Marine biological adhesives are a promising source of inspiration for biomedical and industrial applications. Nevertheless, natural adhesives and especially temporary adhesion systems are mostly unexplored. Sea stars are able to repeatedly attach and detach their hydraulic tube feet. This ability is based on a duo-gland system and, upon detachment, the adhesive material stays behind on the substrate as a 'footprint'. In recent years, characterization of sea star temporary adhesion has been focussed on the forcipulatid species Asterias rubens. Results: We investigated the temporary adhesion system in the distantly related valvatid species Asterina gibbosa. The morphology of tube feet was described using histological sections, transmission-, and scanning electron microscopy. Ultrastructural investigations revealed two adhesive gland cell types that both form electron-dense secretory granules with a more lucid outer rim and one de-adhesive gland cell type with homogenous granules. The footprints comprised a meshwork on top of a thin layer. This topography was consistently observed using various methods like scanning electron microscopy, 3D confocal interference microscopy, atomic force microscopy, and light microscopy with crystal violet staining. Additionally, we tested 24 commercially available lectins and two antibodies for their ability to label the adhesive epidermis and footprints. Out of 15 lectins labelling structures in the area of the duo-gland adhesive system, only one also labelled footprints indicating the presence of glycoconjugates with α-linked mannose in the secreted material. Conclusion: Despite the distant relationship between the two sea star species, the morphology of tube feet and topography of footprints in A. gibbosa shared many features with the previously described findings in A. rubens. These similarities might be due to the adaptation to a benthic life on rocky intertidal areas. Lectin- and immuno-labelling indicated similarities but also some differences in adhesive composition between the two species. Further research on the temporary adhesive of A. gibbosa will allow the identification of conserved motifs in sea star adhesion and might facilitate the development of biomimetic, reversible glues.

3.
J Exp Biol ; 220(Pt 11): 2108-2119, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28373597

RESUMEN

Despite their soft body and slow motion, sea cucumbers present a low predation rate, reflecting the presence of efficient defence systems. For instance, members of the family Holothuriidae rely on Cuvierian tubules for their defence. These tubules are normally stored in the posterior coelomic cavity of the animal, but when the sea cucumber is threatened by a potential predator, they are expelled through the cloacal aperture, elongate, become sticky and entangle and immobilise the predator in a matter of seconds. The mechanical properties (extensibility, tensile strength, stiffness and toughness) of quiescent (i.e. in the body cavity) and elongated (i.e. after expulsion) Cuvierian tubules were investigated in the species Holothuria forskali using traction tests. Important mechanical differences were measured between the two types of tubules, reflecting adaptability to their operating mode: to ease elongation, quiescent tubules present a low resistance to extension, while elongated tubules present a high toughness to resist tractions generated by the predator. We demonstrate that a mutable collagenous tissue (MCT) is involved in the functioning of these organs: (1) some mechanical properties of Cuvierian tubules are modified by incubation in a cell-disrupting solution; (2) the connective tissue layer encloses juxtaligamental-like cells, a cell type present in all MCTs; and (3) tensilin, a MCT stiffening protein, was localised inside these cells. Cuvierian tubules thus appear to enclose a new type of MCT which shows irreversible stiffening.


Asunto(s)
Colágeno/fisiología , Tejido Conectivo/química , Holothuria/fisiología , Secuencia de Aminoácidos , Animales , Fenómenos Biomecánicos , Proteínas Portadoras , Colágeno/efectos de los fármacos , Tejido Conectivo/ultraestructura , Octoxinol , Resistencia a la Tracción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...