Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
IUBMB Life ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117001

RESUMEN

Schizosaccharomyces pombe (fission yeast) is an attractive model for mitochondrial research. The organism resembles human cells in terms of mitochondrial inheritance, mitochondrial transport, sugar metabolism, mitogenome structure and dependence of viability on the mitogenome (the petite-negative phenotype). Transcriptions of these genomes produce only a few polycistronic transcripts, which then undergo processing as per the tRNA punctuation model. In general, the machinery for mitochondrial gene expression is structurally and functionally conserved between fission yeast and humans. Furthermore, molecular research on S. pombe is supported by a considerable number of experimental techniques and database resources. Owing to these advantages, fission yeast has significantly contributed to biomedical and fundamental research. Here, we review the current state of knowledge regarding S. pombe mitochondrial gene expression, and emphasise the pertinence of fission yeast as both a model and tool, especially for studies on mitochondrial translation.

2.
Front Immunol ; 14: 1170321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180110

RESUMEN

Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Calidad de Vida , Inmunoterapia , Cromogranina A
3.
Methods Mol Biol ; 2615: 345-364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807803

RESUMEN

Chlamydomonas reinhardtii and Saccharomyces cerevisiae are currently the two micro-organisms in which genetic transformation of mitochondria is routinely performed. The generation of a large variety of defined alterations as well as the insertion of ectopic genes in the mitochondrial genome (mtDNA) are possible, especially in yeast. Biolistic transformation of mitochondria is achieved through the bombardment of microprojectiles coated with DNA, which can be incorporated into mtDNA thanks to the highly efficient homologous recombination machinery present in S. cerevisiae and C. reinhardtii organelles. Despite a low frequency of transformation, the isolation of transformants in yeast is relatively quick and easy, since several natural or artificial selectable markers are available, while the selection in C. reinhardtii remains long and awaits new markers. Here, we describe the materials and techniques used to perform biolistic transformation, in order to mutagenize endogenous mitochondrial genes or insert novel markers into mtDNA. Although alternative strategies to edit mtDNA are being set up, so far, insertion of ectopic genes relies on the biolistic transformation techniques.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/genética , Saccharomyces cerevisiae/genética , Biolística/métodos , Transformación Genética , Mitocondrias/genética , ADN Mitocondrial/genética
4.
Semin Immunopathol ; 45(1): 17-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598557

RESUMEN

Solid tumors have a dynamic ecosystem in which malignant and non-malignant (endothelial, stromal, and immune) cell types constantly interact. Importantly, the abundance, localization, and functional orientation of each cell component within the tumor microenvironment vary significantly over time and in response to treatment. Such intratumoral heterogeneity influences the tumor course and its sensitivity to treatments. Recently, high-dimensional imaging mass cytometry (IMC) has been developed to explore the tumor ecosystem at the single-cell level. In the last years, several studies demonstrated that IMC is a powerful tool to decipher the tumor complexity. In this review, we summarize the potential of this technology and how it may be useful for cancer research (from preclinical to clinical studies).


Asunto(s)
Ecosistema , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/patología , Citometría de Imagen/métodos , Microambiente Tumoral
6.
Cancers (Basel) ; 14(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36230752

RESUMEN

Background: Triple-negative breast cancers (TNBCs) have a worse prognosis, but might respond to immunotherapies. Macrophages are plastic cells that can adopt various phenotypes and functions. Although they are a major immune population in TNBCs, the relationship between tumor-associated macrophages (TAMs) and TNBC progression has been rarely explored, with controversial results. Methods: We evaluated the prognostic impact of TAMs, quantified by immunohistochemistry with anti-CD68, -IRF8, -CD163, and -CD206 antibodies, in a well-described cohort of 285 patients with non-metastatic TNBC. Results: CD68 (p = 0.008), IRF8 (p = 0.001), and CD163 (p < 0.001) expression positively correlated with higher tumor grade, while CD206 was associated with smaller tumor size (p < 0.001). All macrophage markers were associated with higher tumor-infiltrating lymphocyte numbers and PD-L1 expression. Univariate survival analyses reported a significant positive correlation between CD163+ or CD206+ TAMs and relapse-free survival (respectively: HR = 0.52 [0.28−0.97], p = 0.027, and HR = 0.51 [0.31−0.82], p = 0.005), and between CD206+ TAMs and overall survival (HR = 0.54 [0.35−0.83], p = 0.005). In multivariate analysis, there was a trend for an association between CD206+ TAMs and relapse-free survival (HR = 0.63 [0.33−1.04], p = 0.073). Conclusions: These data suggest that CD206 expression defines a TAM subpopulation potentially associated with favorable outcomes in patients with TNBC. CD206 expression might identify an immune TNBC subgroup with specific therapeutic options.

7.
Front Immunol ; 13: 1011617, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741363

RESUMEN

Currently, the study of resistance mechanisms and disease progression in cancer relies on the capacity to analyze tumors as a complex ecosystem of healthy and malignant cells. Therefore, one of the current challenges is to decipher the intra-tumor heterogeneity and especially the spatial distribution and interactions of the different cellular actors within the tumor. Preclinical mouse models are widely used to extend our understanding of the tumor microenvironment (TME). Such models are becoming more sophisticated and allow investigating questions that cannot be addressed in clinical studies. Indeed, besides studying the tumor cell interactions within their environment, mouse models allow evaluating the efficacy of new drugs and delivery approaches, treatment posology, and toxicity. Spatially resolved analyses of the intra-tumor heterogeneity require global approaches to identify and localize a large number of different cell types. For this purpose, imaging mass cytometry (IMC) is a major asset in the field of human immuno-oncology. However, the paucity of validated IMC panels to study TME in pre-clinical mouse models remains a critical obstacle to translational or basic research in oncology. Here, we validated a panel of 31 markers for studying at the single-cell level the TME and the immune landscape for discovering/characterizing cells with complex phenotypes and the interactions shaping the tumor ecosystem in mouse models.


Asunto(s)
Ecosistema , Neoplasias , Animales , Ratones , Humanos , Modelos Animales de Enfermedad , Microambiente Tumoral , Citometría de Imagen
8.
Nucleic Acids Res ; 49(19): 11145-11166, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34634819

RESUMEN

Mitochondrial mRNAs encode key subunits of the oxidative phosphorylation complexes that produce energy for the cell. In Saccharomyces cerevisiae, mitochondrial translation is under the control of translational activators, specific to each mRNA. In Schizosaccharomyces pombe, which more closely resembles the human system by its mitochondrial DNA structure and physiology, most translational activators appear to be either lacking, or recruited for post-translational functions. By combining bioinformatics, genetic and biochemical approaches we identified two interacting factors, Cbp7 and Cbp8, controlling Cytb production in S. pombe. We show that their absence affects cytb mRNA stability and impairs the detection of the Cytb protein. We further identified two classes of Cbp7/Cbp8 partners and showed that they modulated Cytb or Cox1 synthesis. First, two isoforms of bS1m, a protein of the small mitoribosomal subunit, that appear mutually exclusive and confer translational specificity. Second, a complex of four proteins dedicated to Cox1 synthesis, which includes an RNA helicase that interacts with the mitochondrial ribosome. Our results suggest that S. pombe contains, in addition to complexes of translational activators, a heterogeneous population of mitochondrial ribosomes that could specifically modulate translation depending on the mRNA translated, in order to optimally balance the production of different respiratory complex subunits.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Mitocondrias/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mitocondrial/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Biología Computacional/métodos , Citocromos b/genética , Citocromos b/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Fosforilación Oxidativa , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
9.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34301813

RESUMEN

The immune checkpoint blockade-based immunotherapies are revolutionizing cancer management. Tumor-associated neutrophils (TANs) were recently highlighted to have a pivotal role in modulating the tumor microenvironment and the antitumor immune response. However, these cells were largely ignored during the development of therapies based on programmed cell death receptor or ligand-1 and cytotoxic T lymphocyte antigen-4 immune checkpoint inhibitors (ICIs). Latest evidences of neutrophil functional diversity in tumor raised many questions and suggest that targeting these cells can offer new treatment opportunities in the context of ICI development. Here, we summarized key information on TAN origin, function, and plasticity that should be considered when developing ICIs and provide a detailed review of the ongoing clinical trials that combine ICIs and a second compound that might affect or be affected by TANs. This review article synthetizes important notions from the literature demonstrating that: (1) Cancer development associates with a profound alteration of neutrophil biogenesis and function that can predict and interfere with the response to ICIs, (2) Neutrophil infiltration in tumor is associated with key features of resistance to ICIs, and (3) TANs play an important role in resistance to antiangiogenic drugs reducing their clinical benefit when used in combination with ICIs. Finally, exploring the clinical/translational aspects of neutrophil impact on the response to ICIs offers the opportunity to propose new translational research avenues to better understand TAN biology and treat patients.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/sangre , Neutrófilos/metabolismo , Humanos
11.
Cancers (Basel) ; 13(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673133

RESUMEN

The prognostic impact of the different tumor-infiltrating lymphocyte (TIL) subpopulations in solid cancers is still debated. Here, we investigated the clinicopathological correlates and prognostic impact of TILs, particularly of γδ T cells, in 162 patients with triple-negative breast cancer (TNBC). A high γδ T cell density (>6.625 γδ T cells/mm2) was associated with younger age (p = 0.008), higher tumor histological grade (p = 0.002), adjuvant chemotherapy (p = 0.010), BRCA1 promoter methylation (p = 0.010), TIL density (p < 0.001), and PD-L1 (p < 0.001) and PD-1 expression (p = 0.040). In multivariate analyses, γδ T cell infiltration (cutoff = 6.625 γδ T cells/mm2) was an independent prognostic factor (5-year relapse-free survival: 63.3% vs. 89.8%, p = 0.027; 5-year overall survival: 73.8% vs. 89.9%, p = 0.031, for low vs. high infiltration). This prognostic impact varied according to the tumor PIK3CA mutational status. High γδ T cell infiltration was associated with better survival in patients with PIK3CA wild-type tumors, but the difference was not significant in the subgroup with PIK3CA-mutated tumors. Altogether, these data suggest that high γδ T cell infiltrate is correlated with immune infiltration and might represent a candidate prognostic tool in patients with TNBC.

12.
Front Immunol ; 11: 2186, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042132

RESUMEN

The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of γ and δ chains (γδ T cells) are of particular interest. Indeed, γδ T cells contribute to the immune response against many cancers, notably through their powerful effector functions that lead to the elimination of tumor cells and the recruitment of other immune cells. However, their presence in the tumor microenvironment has been associated with poor prognosis in various solid cancers (breast, colon and pancreatic cancer), suggesting that γδ T cells also display pro-tumor activities. In this review, we outline the current evidences of γδ T cell pro-tumor functions in human cancer. We also discuss the factors that favor γδ T cell polarization toward a pro-tumoral phenotype, the characteristics and functions of such cells, and the impact of pro-tumor subsets on γδ T cell-based therapies.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/inmunología , Animales , Diferenciación Celular , Humanos , Microambiente Tumoral
13.
Cells ; 9(6)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599843

RESUMEN

γδ T-cells contribute to the immune response against many tumor types through their direct cytolytic functions and their capacity to recruit and regulate the biological functions of other immune cells. As potent effectors of the anti-tumor immune response, they are considered an attractive therapeutic target for immunotherapies, but their presence and abundance in the tumor microenvironment are not routinely assessed in patients with cancer. Here, we validated an antibody for immunohistochemistry analysis that specifically detects all γδ T-cell subpopulations in healthy tissues and in the microenvironment of different cancer types. Tissue microarray analysis of breast, colon, ovarian, and pancreatic tumors showed that γδ T-cell density varies among cancer types. Moreover, the abundance of γδ tumor-infiltrating lymphocytes was variably associated with the outcome depending on the cancer type, suggesting that γδ T-cell recruitment is influenced by the context. These findings also suggest that γδ T-cell detection and analysis might represent a new and interesting diagnostic or prognostic marker.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Humanos , Neoplasias/patología
14.
Cancer Discov ; 10(10): 1544-1565, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32641297

RESUMEN

Relapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine-resistant leukemic cells from both AML cell lines and patient samples in vivo and in vitro. CD39 cell-surface expression and activity is increased in patients with AML upon chemotherapy compared with diagnosis, and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics. High CD39 activity promotes cytarabine resistance by enhancing mitochondrial activity and biogenesis through activation of a cAMP-mediated adaptive mitochondrial stress response. Finally, genetic and pharmacologic inhibition of CD39 ecto-ATPase activity blocks the mitochondrial reprogramming triggered by cytarabine treatment and markedly enhances its cytotoxicity in AML cells in vitro and in vivo. Together, these results reveal CD39 as a new residual disease marker and a promising therapeutic target to improve chemotherapy response in AML. SIGNIFICANCE: Extracellular ATP and CD39-P2RY13-cAMP-OxPHOS axis are key regulators of cytarabine resistance, offering a new promising therapeutic strategy in AML.This article is highlighted in the In This Issue feature, p. 1426.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Citarabina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mitocondrias/metabolismo , Citarabina/farmacología , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad
15.
J Leukoc Biol ; 107(6): 1057-1067, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32362028

RESUMEN

γδ T cells contribute to the immune response against many cancers, notably through their powerful effector functions that lead to the elimination of tumor cells and the recruitment of other immune cells. However, their presence in the tumor microenvironment has been associated with poor prognosis in breast, colon, and pancreatic cancer, suggesting that γδ T cells may also display pro-tumor activities. Here, we identified in blood from healthy donors a subpopulation of Vδ1T cells that represents around 20% of the whole Vδ1 population, expresses CD73, and displays immunosuppressive phenotype and functions (i.e., production of immunosuppressive molecules, such as IL-10, adenosine, and the chemotactic factor IL-8, and inhibition of αß T cell proliferation). We then found that in human breast tumors, γδ T cells were present particularly in late stage breast cancer samples, and that ∼20% of tumor-infiltrating γδ T cells expressed CD73. Taken together, these results suggest that regulatory γδ T cells are present in the breast cancer microenvironment and may display immunosuppressive functions through the production of immunosuppressive molecules, such as IL-10, IL-8, and adenosine, thus promoting tumor growth.


Asunto(s)
5'-Nucleotidasa/inmunología , Neoplasias de la Mama/inmunología , Linaje de la Célula/inmunología , Regulación Neoplásica de la Expresión Génica , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T Reguladores/inmunología , 5'-Nucleotidasa/genética , Adenosina/inmunología , Adenosina/metabolismo , Adolescente , Adulto , Anciano , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Diferenciación Celular , Linaje de la Célula/genética , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-8/genética , Interleucina-8/inmunología , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/patología , Persona de Mediana Edad , Cultivo Primario de Células , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Transducción de Señal , Linfocitos T Reguladores/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
16.
Front Immunol ; 11: 718, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373132

RESUMEN

Among inflammatory mediators, a growing body of evidence emphasizes the contribution of the interleukin 17 (IL-17) cytokine family in malignant diseases. Besides IL-17A, the prototypic member of the IL-17 family, several experimental findings strongly support the role of the IL-17B/IL-17 receptor B (IL-17RB) pathway in tumorigenesis and resistance to anticancer therapies. In mouse models, IL-17B signaling through IL-17RB directly promotes cancer cell survival, proliferation, and migration, and induces resistance to conventional chemotherapeutic agents. Importantly, recent work by our and other laboratories showed that IL-17B signaling dramatically alters the tumor microenvironment by promoting chemokine and cytokine secretion which foster tumor progression. Moreover, the finding that elevated IL-17B is associated with poor prognosis in patients with pancreatic, gastric, lung, and breast cancer strengthens the results obtained in pre-clinical studies and highlights its clinical relevance. Here, we review the current understanding on the IL-17B/IL-17RB expression patterns and biological activities in cancer and highlight issues that remain to be addressed to better characterize IL-17B and its receptor as potential targets for enhancing the effectiveness of the existing cancer therapies.


Asunto(s)
Interleucina-17/metabolismo , Neoplasias/inmunología , Receptores de Interleucina-17/metabolismo , Animales , Antineoplásicos/farmacología , Modelos Animales de Enfermedad , Humanos , Ratones , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Pronóstico , Transducción de Señal/efectos de los fármacos
19.
Adv Exp Med Biol ; 1240: 73-82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32060889

RESUMEN

IL-21 is an immunomodulatory cytokine produced by natural killer (NK) cells and T cells that has pleiotropic roles in immune and nonimmune cells. IL-21 can modulate innate and specific immunity activities. It is a potent stimulator of T and natural killer cell-mediated antitumor immunity but also has pro-inflammatory functions in many tissues and is involved in oncogenesis. It is important to understand IL-21 biology in these different situations to ensure the maximal benefit of therapeutic strategies targeting this cytokine. This chapter summarizes IL-21 characteristics and signaling, its role in immune system components, and its use in cancer immunotherapies.


Asunto(s)
Interleucinas/inmunología , Interleucinas/metabolismo , Transducción de Señal , Microambiente Tumoral , Animales , Carcinogénesis , Humanos , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Linfocitos T/inmunología
20.
Int J Radiat Oncol Biol Phys ; 106(5): 1039-1051, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31959545

RESUMEN

PURPOSE: The outcome of locally advanced cervical cancer (LACC) is dismal. Biomarkers are needed to individualize treatments and to improve patient outcomes. Here, we investigated whether coexpression of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 3 (HER3) could be an outcome prognostic biomarker, and whether targeting both EGFR and HER3 with a dual antibody (MEHD7945A) enhanced ionizing radiation (IR) efficacy. METHODS AND MATERIALS: Expression of EGFR and HER3 was evaluated by immunohistochemistry in cancer biopsies (n = 72 patients with LACC). The antitumor effects of the MEHD7945A and IR combotherapy were assessed in 2 EGFR- and HER3-positive cervical cancer cell lines (A431 and CaSki) and in A431 cell xenografts. The mechanisms involved in tumor cell radiosensitization were also studied. The interaction of MEHD7945A, IR, and cisplatin was evaluated using dose-response matrix data. RESULTS: EGFR and HER3 were coexpressed in only in 7 of the 22 biopsies of FIGO IVB cervix cancer. The median overall survival was 14.6 months and 23.1 months in patients with FIGO IVB tumors that coexpressed or did not coexpress EGFR and HER3, respectively. In mice xenografted with A431 (squamous cell carcinoma) cells, MEHD7945A significantly increased IR response by reducing tumor growth and increasing cleaved caspase-3 expression. In A431 and CaSki cells, the combotherapy increased DNA damage and cell death, particularly immunogenic cell death, and decreased survival by inhibiting the MAPK and AKT pathways. An additive effect was observed when IR, MEHD7945A, and cisplatin were combined. CONCLUSIONS: Targeting EGFR and HER3 with a specific dual antibody enhanced IR efficacy. These preliminary results and the prognostic value of EGFR and HER3 coexpression should be confirmed in a larger sample.


Asunto(s)
Receptores ErbB/inmunología , Inmunoglobulina G/inmunología , Receptor ErbB-3/inmunología , Neoplasias del Cuello Uterino/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Supervivencia Celular/inmunología , Supervivencia Celular/efectos de la radiación , Transformación Celular Neoplásica , Terapia Combinada , Daño del ADN , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Inmunoglobulina G/uso terapéutico , Ratones , Persona de Mediana Edad , Receptor ErbB-3/metabolismo , Estudios Retrospectivos , Transducción de Señal/inmunología , Transducción de Señal/efectos de la radiación , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA