Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Oral Health ; 21(1): 49, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541349

RESUMEN

BACKGROUND: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. METHODS: R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5) using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. RESULTS: R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. CONCLUSIONS: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


Asunto(s)
Implantes Dentales , Titanio , Biopelículas , Materiales Biocompatibles Revestidos , Glucolípidos , Staphylococcus aureus , Propiedades de Superficie
2.
Materials (Basel) ; 12(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366076

RESUMEN

AIM: several strategies have been tested in recent years to prevent bacterial colonization of dental implants. Sericin, one of the two main silk proteins, possesses relevant biological activities and also literature reports about its potential antibacterial properties, but results are discordant and not yet definitive. The aim of this study was to evaluate the effectiveness of different experimental protocols in order to obtain a sericin-based coating on medical grade titanium (Ti) able to reduce microbial adhesion to the dental implant surface. MATERIALS AND METHODS: different strategies for covalent bonding of sericin to Ti were pursued throughout a multi-step procedure on Ti-6Al-4V disks. The surface of grade 5 Ti was initially immersed in NaOH solution to obtain the exposure of functional -OH groups. Two different silanization strategies were then tested using aminopropyltriethoxysilane (APTES). Eventually, the bonding between silanized Ti-6Al-4V and sericin was obtained with two different crosslinking processes: glutaraldehyde (GLU) or carbodiimide/N-Hydroxy-succinimide (EDC/NHS). Micro-morphological and compositional analyses were performed on the samples at each intermediate step to assess the most effective coating strategy able to optimize the silanization and bioconjugation processes. Microbiological tests on the coated Ti-6Al-4V disks were conducted in vitro using a standard biofilm producer strain of Staphylococcus aureus (ATCC 6538) to quantify the inhibition of microbial biofilm formation (anti-biofilm efficacy) at 24 hours. RESULTS: both silanization techniques resulted in a significant increase of silicon (Si) on the Ti-6Al-4V surfaces etched with NaOH. Differences were found between GLU and EDC/NHS bioconjugation strategies in terms of composition, surface micro-morphology and anti-biofilm efficacy. Ti-6Al-4V samples coated with GLU-bound sericin after silanization obtained via vapor phase deposition proved that this technique is the most convenient and effective coating strategy, resulting in a bacterial inhibition of about 53% in respect to the uncoated Ti-6Al-4V disks. CONCLUSIONS: The coating with glutaraldehyde-bound sericin after silanization in the vapor phase showed promising bacterial inhibition values with a significant reduction of S. aureus biofilm. Further studies including higher number of replicates and more peri-implant-relevant microorganisms are needed to evaluate the applicability of this experimental protocol to dental implants.

3.
J Ophthalmol ; 2019: 9647947, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467697

RESUMEN

Proliferative membranes of fibrocontractive retinal disorders are extensively studied from the morphological and evolutive point of view. Despite this, little is known of their cellular composition. In this study, the authors investigated the morphological characteristics and cell composition of various types of surgically excised proliferative membranes and internal limiting membranes (ILMs), in order to provide new data supporting or challenging the pathogenic theories proposed until now. Sixty-nine specimens from 64 eyes of 64 consecutive patients were collected at surgery and subjected to a multilevel analysis by means of optical and electron microscopy. Membrane samples were semiquantitatively evaluated for the amount and distribution of cell nuclei and pigment. Immunohistochemical staining was performed with antibodies to alpha smooth muscle actin and CD68. Data were analyzed after grouping according to the following tissue types: ILM (20 specimens), epiretinal membrane (ERM) (22 specimens), ILM + ERM (20 specimens), and proliferative vitreoretinopathy (PVR) (7 specimens). The cell components found in the ERM specimens, like myofibroblasts, macrophages, and polymorphonuclear cells, were recognized as the expression of cell migration and differentiation that induced an inflammatory process and a fibroproliferative repair process. The detection of pigments in specific types of ERM, like those associated with lamellar macular hole (LMH) or secondary to retinal detachment (RD), diabetes, and PVR, suggested that retinal pigment epithelium (RPE) cells may have a role in the development of these vitreoretinal disorders. The reduction of the ERM cellularity with the patient's age supports the hypothesis that ERM evolves in time up to a fibrous tissue formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...