Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 192: 108608, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991565

RESUMEN

An impairment of long-term synaptic plasticity is considered as a peculiar endophenotype of distinct forms of dystonia, a common, disabling movement disorder. Among the few therapeutic options, broad-spectrum antimuscarinic drugs are utilized, aimed at counteracting abnormal striatal acetylcholine-mediated transmission, which plays a crucial role in dystonia pathophysiology. We previously demonstrated a complete loss of long-term synaptic depression (LTD) at corticostriatal synapses in rodent models of two distinct forms of isolated dystonia, resulting from mutations in the TOR1A (DYT1), and GNAL (DYT25) genes. In addition to anticholinergic agents, the aberrant excitability of striatal cholinergic cells can be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). Here, we tested the efficacy of the negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) on striatal LTD. We show that, whereas acute treatment failed to rescue LTD, chronic dipraglurant rescued this form of synaptic plasticity both in DYT1 mice and GNAL rats. Our analysis of the pharmacokinetic profile of dipraglurant revealed a relatively short half-life, which led us to uncover a peculiar time-course of recovery based on the timing from last dipraglurant injection. Indeed, striatal spiny projection neurons (SPNs) recorded within 2 h from last administration showed full expression of synaptic plasticity, whilst the extent of recovery progressively diminished when SPNs were recorded 4-6 h after treatment. Our findings suggest that distinct dystonia genes may share common signaling pathway dysfunction. More importantly, they indicate that dipraglurant might be a potential novel therapeutic agent for this disabling disorder.


Asunto(s)
Cuerpo Estriado/fisiología , Distonía/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Imidazoles/farmacología , Depresión Sináptica a Largo Plazo/fisiología , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/fisiología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Cuerpo Estriado/efectos de los fármacos , Distonía/tratamiento farmacológico , Distonía/genética , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/uso terapéutico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Imidazoles/uso terapéutico , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piridinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores
2.
J Neurosci Methods ; 339: 108728, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32289333

RESUMEN

Although dystonia represents the third most common movement disorder, its pathophysiology remains still poorly understood. In the past two decades, multiple models have been generated, improving our knowledge on the molecular and cellular bases of this heterogeneous group of movement disorders. In this short survey, we will focus on recently generated novel models of DYT1 dystonia, the most common form of genetic, "isolated" dystonia. These models clearly indicate the existence of multiple signaling pathways affected by the protein mutation causative of DYT1 dystonia, torsinA, paving the way for potentially multiple, novel targets for pharmacological intervention.


Asunto(s)
Distonía , Trastornos Distónicos , Trastornos del Movimiento , Distonía/genética , Trastornos Distónicos/genética , Humanos , Mutación/genética , Transducción de Señal
3.
Neurobiol Dis ; 108: 128-139, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28823931

RESUMEN

Striatal dysfunction is implicated in many movement disorders. However, the precise nature of defects often remains uncharacterized, which hinders therapy development. Here we examined striatal function in a mouse model of the incurable movement disorder, myoclonus dystonia, caused by SGCE mutations. Using RNAseq we found surprisingly normal gene expression, including normal levels of neuronal subclass markers to strongly suggest that striatal microcircuitry is spared by the disease insult. We then functionally characterized Sgce mutant medium spiny projection neurons (MSNs) and cholinergic interneurons (ChIs). This revealed normal intrinsic electrophysiological properties and normal responses to basic excitatory and inhibitory neurotransmission. Nevertheless, high-frequency stimulation in Sgce mutants failed to induce normal long-term depression (LTD) at corticostriatal glutamatergic synapses. We also found that pharmacological manipulation of MSNs by inhibiting adenosine 2A receptors (A2AR) restores LTD, again pointing to structurally intact striatal circuitry. The fact that Sgce loss specifically inhibits LTD implicates this neurophysiological defect in myoclonus dystonia, and emphasizes that neurophysiological changes can occur in the absence of broad striatal dysfunction. Further, the positive effect of A2AR antagonists indicates that this drug class be tested in DYT11/SGCE dystonia.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Cuerpo Estriado/efectos de los fármacos , Trastornos Distónicos/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Animales , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Trastornos Distónicos/fisiopatología , Femenino , Ácido Glutámico/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Receptor de Adenosina A2A/metabolismo , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Técnicas de Cultivo de Tejidos
4.
Neurobiol Dis ; 91: 21-36, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26916954

RESUMEN

Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but profoundly impaired the expression of long-term plasticity at corticostriatal synapses in PINK1 heterozygous knockout mice, suggesting that disruption of synaptic plasticity may represent an early feature of a pre-manifesting state of the disease, and a potential tool to test novel neuroprotective agents.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Proteínas Quinasas/genética , Rotenona/farmacología , Sustancia Negra/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Heterocigoto , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Noqueados , Plasticidad Neuronal/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Quinasas/efectos de los fármacos , Sustancia Negra/metabolismo , Sinapsis/metabolismo
5.
Neuropharmacology ; 101: 460-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26498506

RESUMEN

Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes.


Asunto(s)
Corteza Cerebral/citología , Cuerpo Estriado/citología , Dopamina/metabolismo , Proteínas Quinasas/deficiencia , Receptor Cannabinoide CB1/metabolismo , Sinapsis/fisiología , Animales , Benzoxazinas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Ciclohexanoles/farmacocinética , Dopaminérgicos/farmacología , Dronabinol/análogos & derivados , Dronabinol/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Ácido Glutámico/metabolismo , Ratones , Ratones Transgénicos , Morfolinas/farmacología , Naftalenos/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Quinasas/genética , Sinapsis/efectos de los fármacos , Factores de Tiempo , Tritio/farmacocinética
6.
Prog Neurobiol ; 127-128: 91-107, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25697043

RESUMEN

Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Estriado/fisiopatología , Trastornos Distónicos/fisiopatología , Interneuronas/fisiología , Animales , Cuerpo Estriado/anatomía & histología , Humanos
7.
Neuropharmacology ; 85: 440-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24951854

RESUMEN

Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia.


Asunto(s)
Encéfalo/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Trastornos Distónicos/tratamiento farmacológico , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Encéfalo/fisiopatología , Calcio/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Modelos Animales de Enfermedad , Trastornos Distónicos/fisiopatología , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Ratones Transgénicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Técnicas de Cultivo de Tejidos
8.
Neurobiol Dis ; 65: 124-32, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24503369

RESUMEN

DYT1 dystonia is a movement disorder caused by a deletion in the C-terminal of the protein torsinA. It is unclear how torsinA mutation might disrupt cellular processes encoding motor activity, and whether this impairment occurs in specific brain regions. Here, we report a selective impairment of corticostriatal synaptic plasticity in knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) as compared to controls (Tor1a(+/+) mice). In striatal spiny neurons from Tor1a(+/Δgag) mice, high-frequency stimulation failed to induce long-term depression (LTD), whereas long-term potentiation (LTP) exhibited increased amplitude. Of interest, blockade of D2 dopamine receptors (D2Rs) increased LTP in Tor1a(+/+) mice to a level comparable to that measured in Tor1a(+/Δgag) mice and normalized the levels of potentiation across mouse groups. A low-frequency stimulation (LFS) protocol was unable to depotentiate corticostriatal synapses in Tor1a(+/Δgag) mice. Muscarinic M1 acetylcholine receptor (mAChR) blockade rescued plasticity deficits. Additionally, we found an abnormal responsiveness of cholinergic interneurons to D2R activation, consisting in an excitatory response rather than the expected inhibition, further confirming an imbalance between dopaminergic and cholinergic signaling in the striatum. Conversely, synaptic activity and plasticity in the CA1 hippocampal region were unaltered in Tor1a(+/Δgag) mice. Importantly, the M1 mAChR-dependent enhancement of hippocampal LTP was unaffected in both genotypes. Similarly, both basic properties of dopaminergic nigral neurons and their responses to D2R activation were normal. These results provide evidence for a regional specificity of the electrophysiological abnormalities observed and demonstrate the reproducibility of such alterations in distinct models of DYT1 dystonia.


Asunto(s)
Encéfalo/patología , Distonía/genética , Distonía/patología , Chaperonas Moleculares/genética , Plasticidad Neuronal/genética , Sinapsis/patología , Animales , Modelos Animales de Enfermedad , Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/genética , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Antagonistas Muscarínicos/farmacología , Mutación/genética , Neuronas/fisiología , Picrotoxina/farmacología , Pirenzepina/farmacología , Sinapsis/genética
9.
Neuropharmacology ; 75: 78-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23891638

RESUMEN

Cholinergic interneurons (ChIs) of dorsal striatum play a key role in motor control and in behavioural learning. Neuropeptides regulate cholinergic transmission and mu opioid receptor (MOR) activation modulates striatal acetylcholine release. However, the mechanisms underlying this effect are yet uncharacterized. Here, we examined the electrophysiological responses of ChIs to the selective MOR agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5] enkephalin}. We observed a robust, dose-dependent inhibition of spontaneous firing activity (0.06-3 µM) which was reversible upon drug washout and blocked by the selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) (1 µM). Voltage-clamp analysis of the reversal potential of the DAMGO effect did not provide univocal results, indicating the involvement of multiple membrane conductances. The MOR-dependent effect persisted in the presence of GABAA and ionotropic glutamate receptor antagonists, ruling out an indirect effect. Additionally, it depended upon G-protein activation, as it was prevented by intrapipette GDP-ß-S. Because D2 dopamine receptors (D2R) and MOR share a common post-receptor signalling pathway, occlusion experiments were performed with maximal doses of both D2R and MOR agonists. The D2R agonist quinpirole decreased spike discharge, which was further reduced by adding DAMGO. Then, D2R or MOR antagonists were used to challenge the response to the respective agonists, DAMGO or quinpirole. No cross-effect was observed, suggesting that the two receptors act independently. Our findings demonstrate a postsynaptic inhibitory modulation by MOR on ChIs excitability. Such opioidergic regulation of cholinergic transmission might contribute to shape information processing in basal ganglia circuits, and represent a potential target for pharmacological intervention.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/citología , Inhibición Neural/fisiología , Receptores Opioides mu/metabolismo , Potenciales de Acción/efectos de los fármacos , Analgésicos Opioides/farmacología , Anestésicos Locales/farmacología , Animales , Cloruro de Cadmio/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Agonistas de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/efectos de los fármacos , Quinpirol/farmacología , Receptores Opioides mu/antagonistas & inhibidores , Somatostatina/análogos & derivados , Somatostatina/farmacología , Tetrodotoxina/farmacología
10.
Neuroscience ; 211: 126-35, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21839811

RESUMEN

In the recent past, the pathogenesis of Parkinson's disease (PD) has evolved from a neurodegenerative disorder considered entirely sporadic to a disease with an unequivocal genetic component. Indeed, different inherited forms of PD have been discovered and characterized, although the functional roles of the gene products identified are still under intense investigation. To gain a better understanding of the cellular and molecular pathogenic mechanisms of hereditary forms of PD, different animal models have been generated. Although most of the rodent models display neither obvious behavioral impairment nor evidence for neurodegeneration, remarkable abnormalities of dopamine-mediated neurotransmission and corticostriatal synaptic plasticity have been described, indicative of a fundamental distortion of network function within the basal ganglia. The picture emerging from a critical review of recent data on monogenic parkinsonisms suggests that mutations in PD genes might cause developmental rearrangements in the corticobasal ganglia circuitry, compensating the dopaminergic dysfunction observed both in mice and humans, in order to maintain proper motor function.


Asunto(s)
Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/fisiología , Plasticidad Neuronal/fisiología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/fisiopatología , Transmisión Sináptica/genética , Animales , Homeostasis/genética , Homeostasis/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiopatología , Plasticidad Neuronal/genética , Transmisión Sináptica/fisiología
11.
Neuroscience ; 177: 240-51, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21195752

RESUMEN

In the present work we analyzed the profile of high voltage-activated (HVA) calcium (Ca2+) currents in freshly isolated striatal medium spiny neurons (MSNs) from rodent models of both idiopathic and familial forms of Parkinson's disease (PD). MSNs were recorded from reserpine-treated and 6-hydroxydopamine (6-OHDA)-lesioned rats, and from DJ-1 and PINK1 (PTEN induced kinase 1) knockout (-/-) mice. Our analysis showed no significant changes in total HVA Ca2+ current. However, we recorded a net increase in the L-type fraction of HVA Ca2+ current in dopamine-depleted rats, and of both N- and P-type components in DJ-1-/- mice, whereas no significant change in Ca2+ current profile was observed in PINK1-/- mice. Dopamine modulates HVA Ca2+ channels in MSNs, thus we also analyzed the effect of D1 and D2 receptor activation. The effect of the D1 receptor agonist SKF 83822 on Ca2+ current was not significantly different among MSNs from control animals or PD models. However, in both dopamine-depleted rats and DJ-1-/- mice the D2 receptor agonist quinpirole inhibited a greater fraction of HVA Ca2+ current than in the respective controls. Conversely, in MSNs from PINK1-/- mice we did not observe alterations in the effect of D2 receptor activation. Additionally, in both reserpine-treated and 6-OHDA-lesioned rats, the effect of quinpirole was occluded by the selective L-type Ca2+ channel blocker nifedipine, while in DJ-1-/- mice it was mostly occluded by ω-conotoxin GVIA, blocker of N-type channels. These results demonstrate that both dopamine depletion and DJ-1 deletion induce a rearrangement in the HVA Ca2+ channel profile, specifically involving those channels that are selectively modulated by D2 receptors.


Asunto(s)
Canales de Calcio/metabolismo , Dopamina/fisiología , Neostriado/metabolismo , Neuronas/metabolismo , Proteínas Oncogénicas/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Receptores de Dopamina D2/metabolismo , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad , Dopamina/deficiencia , Dopamina/genética , Masculino , Ratones , Ratones Noqueados , Neostriado/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Proteínas Oncogénicas/deficiencia , Técnicas de Cultivo de Órganos , Trastornos Parkinsonianos/genética , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Ratas , Ratas Wistar , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/deficiencia
12.
Exp Neurol ; 215(2): 388-96, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19071114

RESUMEN

An altered glutamatergic input at corticostriatal synapses has been shown in experimental models of Parkinson's disease (PD). In the present work, we analyzed the membrane and synaptic responses of striatal neurons to metabotropic glutamate (mGlu) receptor activation in two different mouse models of inherited PD, linked to mutations in PINK1 or Parkin genes. Both in PINK1 and Parkin knockout ((-/-)) mice, activation of group I mGlu receptors by 3,5-DHPG caused a membrane depolarization coupled to an increase in firing frequency in striatal cholinergic interneurons that was comparable to the response observed in the respective wild-type (WT) interneurons. The sensitivity to group II and III mGlu receptors was tested on cortically-evoked excitatory postsynaptic potentials (EPSPs) recorded from medium spiny neurons (MSNs). Both LY379268 and L-AP4, agonists for group II and III, respectively, had no effect on intrinsic membrane properties, but dose-dependently reduced the amplitude of corticostriatal EPSPs. However, both in PINK1(-/-) and Parkin(-/-) mice, LY379268, but not L-AP4, exhibited a greater potency as compared to WT in depressing EPSP amplitude. Accordingly, the dose-response curve for the response to LY379268 in both knockout mice was shifted leftward. Moreover, consistent with a presynaptic site of action, both LY379268 and L-AP4 increased the paired-pulse ratio either in PINK1(-/-) and Parkin(-/-) or in WT mice. Acute pretreatment with L-dopa did not rescue the enhanced sensitivity to LY379268. Together, these results suggest that the selective increase in sensitivity of striatal group II mGlu receptors represents an adaptive change in mice in which an altered dopamine metabolism has been documented.


Asunto(s)
Corteza Cerebral/citología , Cuerpo Estriado/citología , Neuronas/fisiología , Proteínas Quinasas/deficiencia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/genética , Ubiquitina-Proteína Ligasas/deficiencia , Aminoácidos/farmacología , Animales , Fenómenos Biofísicos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Dopaminérgicos/farmacología , Estimulación Eléctrica/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Técnicas In Vitro , Levodopa/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Propionatos/farmacología , Sinapsis/efectos de los fármacos
13.
Neuropharmacology ; 55(4): 392-5, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18602651

RESUMEN

In the recent past, evidence accumulated in favour of a central role of group I metabotropic glutamate (mGlu) receptors, mGlu1 and mGlu5, in the modulation of cell excitability both of striatal medium spiny projection neurons (MSNs) and interneuronal population. Electrophysiological and pharmacological studies have clearly shown that activation of mGlu1 and mGlu5 receptors exerts distinct actions, depending on the neuronal subtype involved. MGlu5 receptor activation mediates the potentiation of NMDA responses in MSNs, and underlies the retrograde inhibitory signaling by endocannabinoids at corticostriatal synapses. Conversely, both group I mGlu receptors are involved in long-term synaptic plasticity of MSNs. Likewise, either mGlu1 or mGlu5 receptors are engaged in shaping the excitability of large cholinergic interneurons, playing different roles in the membrane responses. Differently, although GABAergic parvalbumin-positive, fast-spiking interneurons have been shown to express both group I receptors, only mGlu1 receptor seems to mediate membrane and synaptic responses. This review provides a brief survey of the cellular and synaptic actions of group I mGlu receptors, and discusses the potential relevance of these findings in neostriatal function and motor control.


Asunto(s)
Cuerpo Estriado/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Animales , Humanos
14.
Neuroscience ; 152(2): 469-76, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18262727

RESUMEN

By means of whole-cell patch-clamp recordings, we characterized the developmental profile of high-voltage-activated (HVA) calcium (Ca(2+)) channel subtypes in distinct neuronal populations of mouse striatum. Acutely dissociated medium spiny neurons (MSNs) and cholinergic interneurons (ChIs) were recorded from mice at five developmental stages: postnatal-days (PD) 14, 23, 40, 150 and 270. During ageing, total HVA Ca(2+) current recorded from both MSNs and ChIs was unchanged. However, the pharmacological analysis of the differential contribution of HVA Ca(2+) channel subtypes showed a significant rearrangement of each component. In both neuronal subtypes, a large fraction of the total HVA current recorded from PD14 mice was inhibited by the L-type HVA channel blocker nifedipine. This dihydropyridine-sensitive component accounted for nearly 50%, in MSNs, and 35%, in ChIs, of total current at PD14, but its contribution was down-regulated up to 20-25% at 9 months. Likewise, the N-type, omega-conotoxin GVIA-sensitive component decreased from 35% to 40% to about 25% in MSNs and 15% in ChIs. The P-type, omega-agatoxin-sensitive fraction did not show significant changes in both neuronal subtypes, whereas the Q-type, omega-conotoxin MVIIC-sensitive channels did show a significant up-regulation at 9 months. As compared with striatal neurons, we recorded pyramidal neurons dissociated from cortical layers IV-V and found no significant developmental change in the different components of HVA Ca(2+) currents. In conclusion, our data demonstrate a functional reconfiguration of HVA Ca(2+) channels in striatal but not cortical pyramidal neurons during mouse development. Such changes might have profound implications for physiological and pathophysiological processes of the striatum.


Asunto(s)
Envejecimiento/fisiología , Canales de Calcio/fisiología , Cuerpo Estriado/citología , Neuronas/clasificación , Neuronas/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/clasificación , Canales de Calcio/efectos de los fármacos , Canales de Calcio/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp/métodos
15.
Amino Acids ; 32(2): 189-95, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16715415

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNc). The symptoms are resting tremor, slowness of movement, rigidity and postural instability. Evidence that an imbalance between dopaminergic and cholinergic transmission takes place within the striatum led to the utilization of DA precursors, DA receptor agonists and anticholinergic drugs in the symptomatic therapy of PD. However, upon disease progression the therapy becomes less effective and debilitating effects such as dyskinesias and motor fluctuations appear. Hence, the need for the development of alternative therapeutic strategies has emerged. Several observations in different experimental models of PD suggest that blockade of excitatory amino acid transmission exerts antiparkinsonian effects. In particular, recent studies have focused on metabotropic glutamate receptors (mGluRs). Drugs acting on group I and II mGluRs have indeed been proven useful in ameliorating the parkinsonian symptoms in animal models of PD and therefore might represent promising therapeutic targets. This beneficial effect could be due to the reduction of both glutamatergic and cholinergic transmission. A novel target for drugs acting on mGluRs in PD therapy might be represented by striatal cholinergic interneurons. Indeed, the activation of mGluR2, highly expressed on this cell type, is able to reduce calcium-dependent plateau potentials by interfering with somato-dendritic N-type calcium channel activity, in turn reducing ACh release in the striatum. Similarly, the blockade of both group I mGluR subtypes reduces cholinergic interneuron excitability, and decreases striatal ACh release. Thus, targeting mGluRs located onto cholinergic interneurons might result in a beneficial pharmacological effect in the parkinsonian state.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Canales de Calcio/metabolismo , Dopamina/metabolismo , Electrofisiología , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Neuronas/metabolismo , Ratas , Receptores Colinérgicos/metabolismo , Receptores de Glutamato/metabolismo , Sustancia Negra/metabolismo
16.
Neurobiol Dis ; 24(2): 318-25, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16934985

RESUMEN

Early-onset torsion dystonia (DYT1) is an autosomal dominant disease caused by a deletion in the gene encoding the protein torsinA. Recently, a transgenic mouse model of DYT1 has been described, expressing either the human wild-type torsinA (hWT) or mutant torsinA (hMT). We recorded the activity of striatal cholinergic interneurons of hWT, hMT, and control mice. In slice preparations, no significant differences were observed in resting membrane potential (RMP), firing activity, action potential duration or Ih current. Quinpirole, a D2-like dopamine receptor agonist, did not produce detectable effects on RMP of cholinergic interneurons in control mice and hWT mice, but in the hMT mice caused membrane depolarization and an increase in the firing rate. D2 receptor activation inhibits N-type high-voltage-activated calcium currents. We found that, in isolated interneurons from hMT mice, the quinpirole-mediated inhibition of N-type currents was significantly larger than in hWT and controls. Moreover, the N-type component was significantly over-represented in hMT mice. The altered sensitivity of N-type channels in hMT mice could account for the paradoxical excitatory effect of D2 stimulation. Our data support the existence of an imbalance between striatal dopaminergic and cholinergic signaling in DYT1 dystonia.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Cuerpo Estriado/metabolismo , Distonía Muscular Deformante/metabolismo , Interneuronas/metabolismo , Chaperonas Moleculares/genética , Receptores de Dopamina D2/metabolismo , Acetilcolina/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Distonía Muscular Deformante/genética , Distonía Muscular Deformante/fisiopatología , Humanos , Interneuronas/efectos de los fármacos , Ratones , Ratones Transgénicos , Chaperonas Moleculares/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Receptores de Dopamina D2/agonistas
17.
Curr Neuropharmacol ; 4(1): 69-75, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18615133

RESUMEN

Current knowledge of the pathogenesis of basal ganglia disorders, such as Huntington's disease (HD) and Parkinson's disease (PD) appoints a central role to a dysfunction in mitochondrial metabolism. The development of animal models, based upon the use of mitochondrial toxins has been successfully introduced to reproduce human disease, leading to important acquisitions. Most notably, experimental evidence supports the existence, within basal ganglia, of a peculiar regional vulnerability to distinct mitochondrial toxins. MPTP and rotenone, both selective inhibitors of mitochondrial complex I have been extensively used to mimic PD. Accordingly, in human PD, a specific dysfunction of complex I activity was found in vulnerable dopaminergic neurons of the substantia nigra. Conversely, in HD a selective impairment of mitochondrial succinate dehydrogenase, key enzyme in complex II activity was found in medium spiny neurons of the caudate-putamen. The relevance of such finding is further demonstrated by the evidence that toxins able to primarily target mitochondrial complex II, such as malonic acid and 3-nitropropionic acid (3-NP), strikingly reproduce the main phenotypic and pathological features of HD.Despite the advances obtained from these experimental models, a deeper understanding of the molecular and cellular mechanisms underlying such neuronal vulnerability is lacking.The present review provides a brief survey of currently utilized animal models of mitochondrial intoxication, in attempt to address the cellular mechanisms triggered by energy metabolism failure and to identify potential therapeutic targets.

18.
Neuropharmacology ; 49 Suppl 1: 104-13, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16005029

RESUMEN

Within basal ganglia, group I metabotropic glutamate receptor subtypes (mGluR1 and 5) frequently co-localize in the same neuron. However, little is known about how these receptors functionally interact. We addressed this issue by means of electrophysiological recordings of striatal cholinergic interneurons, a neuronal subtype that co-express both group I mGluRs. The group I non-selective agonist 3,5-DHPG induced a membrane depolarization/inward current that was prevented by co-application of LY 367385, a selective mGluR1 antagonist, and SIB 1757 or MPEP, blockers of mGluR5 subtype. The reversal potential for the response to 3,5-DHPG was close to the equilibrium potential for potassium channels. Repeated bath or focal applications of 3,5-DHPG induced a progressive decline in the amplitude of the membrane depolarization, suggesting that group I mGluRs undergo receptor desensitization. Interestingly, in the presence of the mGluR5 blocker, SIB 1757, this event was not observed, whereas it occurred in LY 367385. PKC blockers chelerythrine and calphostin C mimicked the inhibitory effect of SIB 1757. In a subset of interneurons, in MPEP or SIB 1757, 3,5-DHPG induced a 0.5-1 Hz oscillatory response, that was prevented by L-type Ca2+ channel blockers, and by the tyrosine kinase inhibitors genistein and lavendustin. Together, these data suggest that mGluR5 modulates mGluR1 activity to shape cell excitability.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Estriado/citología , Interneuronas/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Anestésicos Locales/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Nimodipina/farmacología , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5 , Tetrodotoxina/farmacología
19.
Exp Neurol ; 185(1): 169-81, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14697328

RESUMEN

Mitochondrial metabolism impairment has been implicated in the pathogenesis of several neurodegenerative disorders. In the present work, we combined electrophysiological recordings and microfluorometric measurements from cholinergic interneurons obtained from a rat neostriatal slice preparation. Acute application of the mitochondrial complex I inhibitor rotenone produced an early membrane hyperpolarization coupled to a fall in input resistance, followed by a late depolarizing response. Current-voltage relationship showed a reversal potential of -80 +/- 3 mV, suggesting the involvement of a potassium (K+) current. Simultaneous measurement of intracellular sodium [Na+]i or calcium [Ca2+]i concentrations revealed a striking correlation between [Na+]i elevation and the early membrane hyperpolarization, whereas a significant [Ca2+]i rise matched the depolarizing phase. Interestingly, ion and membrane potential changes were mimicked by ouabain, inhibitor of the Na+-K+ATPase, and were insensitive to tetrodotoxin (TTX) or to a combination of glutamate receptor antagonists. The rotenone effects were partially reduced by blockers of ATP-sensitive K+ channels, glibenclamide and tolbutamide, and largely attenuated by a low Na+-containing solution. Morphological analysis of the rotenone effects on striatal slices showed a significant decrease in the number of choline acetyltransferase (ChAT) immunoreactive cells. These results suggest that rotenone rapidly disrupts the ATP content, leading to a decreased Na+-K+ATPase function and, therefore, to [Na+]i overload. In turn, the hyperpolarizing response might be generated both by the opening of ATP-sensitive K+ channels and by Na+-activated K+ conductances. The increase in [Ca2+]i occurs lately and does not seem to influence the early events.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Interneuronas/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Plaguicidas/toxicidad , Rotenona/toxicidad , Animales , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Colina O-Acetiltransferasa/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Interneuronas/citología , Interneuronas/fisiología , Transporte Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana/fisiología , Microscopía por Video , Técnicas de Placa-Clamp , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
20.
J Neurosci ; 23(12): 5272-82, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12832552

RESUMEN

The role of noradrenergic neurotransmission was analyzed in striatal cholinergic interneurons. Conventional intracellular and whole-cell patch-clamp recordings were made of cholinergic interneurons in rat brain slice preparations. Bath-applied noradrenaline (NA) (1-300 microm) dose-dependently induced both an increase in the spontaneous firing activity and a membrane depolarization of the recorded cells. In voltage-clamped neurons, an inward current was induced by NA. This effect was not prevented by alpha-adrenoceptor antagonists, whereas it was mimicked by the beta-adrenoceptor agonist isoproterenol and blocked by the beta1 antagonists propranolol and betaxolol. Interestingly, forskolin, activator of adenylate cyclase, mimicked and occluded the membrane depolarization obtained at saturating doses of both dopamine and NA. Accordingly, SQ22,536, a selective adenylate cyclase inhibitor, reduced the response to NA. Analysis of the reversal potential of the NA-induced current did not provide homogeneous results, indicating the involvement of multiple membrane conductances. Because cAMP is known to modulate Ih, the effects of ZD7288, a selective inhibitor of Ih current, were examined on the NA-induced membrane depolarization/inward current. ZD7288 mostly reduced the response to NA. However, both KT-5720 and H-89, selective protein kinase A (PKA) blockers, failed to prevent the excitatory action of NA. Likewise, calphostin C, antagonist of PKC, genistein, inhibitor of tyrosine kinase, and 8-Bromo-cGMP, blocker of PKG, did not affect the response to NA. Finally, double-labeling experiments combining beta1-adrenoceptor and choline acetyltransferase immunocytochemistry by means of confocal microscopy revealed a strong beta1-adrenoceptor labeling on cholinergic interneurons. We conclude that NA depolarizes striatal cholinergic interneurons via beta1-adrenoceptor activation, through a cAMP-dependent but PKA-independent mechanism.


Asunto(s)
Cuerpo Estriado/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Interneuronas/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Fibras Colinérgicas/efectos de los fármacos , Fibras Colinérgicas/fisiología , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inmunohistoquímica , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Masculino , Norepinefrina/farmacología , Norepinefrina/fisiología , Técnicas de Placa-Clamp , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 1/efectos de los fármacos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...