Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inflamm Regen ; 44(1): 31, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902841

RESUMEN

BACKGROUND: Tobacco smoking causes pulmonary inflammation, resulting in emphysema, an independent risk factor for lung cancer. Induction of insulin-like growth factor 2 (IGF2) in response to lung injury by tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and polycyclic aromatic hydrocarbon benzo[a]pyrene in combination (NB), is critical for the proliferation of alveolar type 2 cells (AT2s) for lung repair. However, persistent IGF2 overexpression during NB-induced severe injury results in hyperproliferation of AT2s without coordinated AT2-to-AT1 differentiation, disrupting alveolar repair, which leads to the concurrent development of emphysema and lung cancer. The current study aims to verify the role of IGF2 signaling in the associated development of emphysema and cancer and develop effective pharmaceuticals for the diseases using animal models that recapitulate the characteristics of these chronic diseases. METHODS: The pathogenesis of pulmonary emphysema and cancer was analyzed by lung function testing, histological evaluation, in situ zymography, dihydroethidium staining, and immunofluorescence and immunohistochemistry analyses utilizing mouse models of emphysema and cancer established by moderate exposure to NB for up to seven months. RESULTS: Moderate NB exposure induced IGF2 expression in AT2s during the development of pulmonary emphysema and lung cancer in mice. Using AT2-specific insulin receptor knockout mice, we verified the causative role of sustained IGF2 signaling activation in AT2s in emphysema development. IGF2-targeting strategies, including voltage-dependent calcium channel blocker (CCB) and a neutralizing antibody, significantly suppressed the NB-induced development of emphysema and lung cancer. A publicly available database revealed an inverse correlation between the use of calcium channel blockers and a COPD diagnosis. CONCLUSIONS: Our work confirms sustained IGF2 signaling activation in AT2s couples impaired lung repair to the concurrent development of emphysema and cancer in mice. Additionally, CCB and IGF2-specific neutralizing antibodies are effective pharmaceuticals for the two diseases.

2.
Nat Commun ; 15(1): 4909, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851766

RESUMEN

Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice. NB enhances glucose uptake in tumor-associated macrophages by increasing the expression and surface localization of glucose transporter (GLUT) 1 and 3, thereby leading to transcriptional upregulation of insulin-like growth factor 2 (IGF2), which subsequently activates insulin receptor (IR) in LC cells in a paracrine manner, promoting its nuclear import. Nuclear IR binds to nucleophosmin (NPM1), resulting in IR/NPM1-mediated activation of the CD274 promoter and expression of programmed death ligand-1 (PD-L1). Restricting glycolysis, depleting macrophages, or blocking PD-L1 inhibits NB-mediated LC progression. Analysis of patient tissues and public databases reveals elevated levels of IGF2 and GLUT1 in tumor-associated macrophages, as well as tumoral PD-L1 and phosphorylated insulin-like growth factor 1 receptor/insulin receptor (pIGF-1R/IR) expression, suggesting potential poor prognostic biomarkers for LC patients. Our data indicate that paracrine IGF2/IR/NPM1/PD-L1 signaling, facilitated by NB-induced dysregulation of glucose levels and metabolic reprogramming of macrophages, contributes to TS-mediated LC progression.


Asunto(s)
Antígeno B7-H1 , Benzo(a)pireno , Progresión de la Enfermedad , Hiperglucemia , Factor II del Crecimiento Similar a la Insulina , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Proteínas Nucleares , Nucleofosmina , Receptor de Insulina , Animales , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Masculino , Humanos , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Ratones , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Hiperglucemia/metabolismo , Benzo(a)pireno/toxicidad , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nitrosaminas/toxicidad , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Comunicación Paracrina , Regulación Neoplásica de la Expresión Génica , Fumar/efectos adversos , Macrófagos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38683453

RESUMEN

Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.

4.
Anticancer Res ; 44(3): 1079-1086, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423648

RESUMEN

BACKGROUND/AIM: Melanoma is a prevalent malignant tumor that arises from melanocytes. The treatment of malignant melanoma has become challenging due to the development of drug resistance. It is, therefore, imperative to identify novel therapeutic drug candidates for controlling malignant melanoma. Naringenin is a flavonoid abundant in oranges and other citrus fruits and recognized for its numerous medicinal benefits. The objective of the study was to assess the anti-carcinogenic potential of naringenin by evaluating its ability to regulate the cellular production of reactive oxygen species (ROS) and its effect on mitochondrial function and apoptosis in melanoma cells. MATERIALS AND METHODS: Cell viability, intracellular ROS levels, cell apoptosis, and mitochondrial functions were evaluated. RESULTS: Naringenin decreased melanoma cell viability and triggered generation of ROS, leading to cell apoptosis. In addition, it stimulated mitochondrial damage in melanoma cells by elevating the levels of Ca2+ and ROS in the mitochondria and decreasing cellular ATP. Naringenin stimulated the expression of proapoptotic proteins, including phospho p53, B-cell lymphoma-2 (Bcl-2)-associated X protein, cleaved caspase-3, and cleaved caspase-9, in melanoma cells in a time-dependent manner. Furthermore, it reduced the expression of the anti-apoptotic protein Bcl-2. Naringenin triggered cell apoptosis by phosphorylating c-Jun N-terminal kinase and stimulating cellular autophagy. CONCLUSION: Naringenin caused oxidative stress and mitochondrial damage, and activated autophagy in melanoma cells, leading to cell apoptosis. These findings indicate the potential of naringenin as a new therapeutic candidate for melanoma.


Asunto(s)
Flavanonas , Melanoma , Humanos , Especies Reactivas de Oxígeno/metabolismo , Melanoma/patología , Línea Celular Tumoral , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Potencial de la Membrana Mitocondrial
5.
Biomol Ther (Seoul) ; 32(1): 136-145, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37424516

RESUMEN

People with obesity maintain low levels of inflammation; therefore, their exposure to foreign antigens can trigger an excessive immune response. In people with obesity or allergic contact dermatitis (ACD), symptoms are exacerbated by a reduction in the number of regulatory T cells (Tregs) and IL-10/TGF-ß-modified macrophages (M2 macrophages) at the inflammatory site. Benefits of intermittent fasting (IF) have been demonstrated for many diseases; however, the immune responses regulated by macrophages and CD4+T cells in obese ACD animal models are poorly understood. Therefore, we investigated whether IF suppresses inflammatory responses and upregulates the generation of Tregs and M2 macrophages in experimental ACD animal models of obese mice. The IF regimen relieved various ACD symptoms in inflamed and adipose tissues. We showed that the IF regimen upregulates Treg generation in a TGF-ß-dependent manner and induces CD4+T cell hypo-responsiveness. IF-M2 macrophages, which strongly express TGF-ß and inhibit CD4+T cell proliferation, directly regulated Treg differentiation from CD4+T cells. These results indicate that the IF regimen enhances the TGF-ß-producing ability of M2 macrophages and that the development of Tregs keeps mice healthy against ACD exacerbated by obesity. Therefore, the IF regimen may ameliorate inflammatory immune disorders caused by obesity.

6.
Life Sci ; 329: 121925, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423377

RESUMEN

AIM: The prevalence of metabolic syndrome (MetS), a cluster of serious medical conditions that raise the risk of lung cancer, has increased worldwide. Tobacco smoking (TS) potentially increases the risk of developing MetS. Despite the potential association of MetS with lung cancer, preclinical models that mimic human diseases, including TS-induced MetS, are limited. Here we evaluated the impact of exposure to tobacco smoke condensate (TSC) and two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNK) and benzo[a]pyrene (BaP), on MetS development in mice. MATERIALS AND METHODS: FVB/N or C57BL/6 mice were exposed to vehicle, TSC, or NNK and BaP (NB) twice weekly for 5 months. The serum levels of total cholesterol (TCHO), triglycerides, high-density lipoprotein (HDL), blood glucose, and metabolites, along with glucose tolerance and body weight, were measured. KEY FINDINGS: Compared with those of vehicle-treated mice, mice with TSC or NB exposure displayed major phenotypes associated with MetS, including increased serum levels of TCHO, triglycerides, and fasting and basal blood glucose and decreased glucose tolerance, and serum levels of HDL. These MetS-associated changes were found in both FVB/N and C57BL/6 mice that were susceptible or resistant to carcinogen-induced tumorigenesis, respectively, indicating that tumor formation is not involved in the TSC- or NB-mediated MetS. Moreover, oleic acid and palmitoleic acid, which are known to be associated with MetS, were significantly upregulated in the serum of TSC- or NB-treated mice compared with those in vehicle-treated mice. SIGNIFICANCE: Both TSC and NB caused detrimental health problems, leading to the development of MetS in experimental mice.


Asunto(s)
Neoplasias Pulmonares , Síndrome Metabólico , Nitrosaminas , Ratones , Animales , Humanos , Benzo(a)pireno/toxicidad , 1-Butanol/efectos adversos , Glucemia , Síndrome Metabólico/inducido químicamente , Ratones Endogámicos C57BL , Nitrosaminas/toxicidad , Nitrosaminas/metabolismo , Carcinógenos/toxicidad , Carcinógenos/metabolismo , Neoplasias Pulmonares/inducido químicamente
7.
Exp Mol Med ; 55(6): 1131-1144, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37258578

RESUMEN

The renin-angiotensin (RA) system has been implicated in lung tumorigenesis without detailed mechanistic elucidation. Here, we demonstrate that exposure to the representative tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) promotes lung tumorigenesis through deregulation of the pulmonary RA system. Mechanistically, NNK binding to the nicotinic acetylcholine receptor (nAChR) induces Src-mediated signal transducer and activator of transcription 3 (STAT3) activation, resulting in transcriptional upregulation of angiotensinogen (AGT) and subsequent induction of the angiotensin II (AngII) receptor type 1 (AGTR1) signaling pathway. In parallel, NNK concurrently increases insulin-like growth factor 2 (IGF2) production and activation of IGF-1R/insulin receptor (IR) signaling via a two-step pathway involving transcriptional upregulation of IGF2 through STAT3 activation and enhanced secretion from intracellular storage through AngII/AGTR1/PLC-intervened calcium release. NNK-mediated crosstalk between IGF-1R/IR and AGTR1 signaling promoted tumorigenic activity in lung epithelial and stromal cells. Lung tumorigenesis caused by NNK exposure or alveolar type 2 cell-specific Src activation was suppressed by heterozygous Agt knockout or clinically available inhibitors of the nAChR/Src or AngII/AGTR1 pathways. These results demonstrate that NNK-induced stimulation of the lung RA system leads to IGF2-mediated IGF-1R/IR signaling activation in lung epithelial and stromal cells, resulting in lung tumorigenesis in smokers.


Asunto(s)
Neoplasias Pulmonares , Nitrosaminas , Receptores Nicotínicos , Carcinógenos/toxicidad , Nicotiana/metabolismo , Nitrosaminas/toxicidad , Nitrosaminas/metabolismo , Receptores Nicotínicos/metabolismo , Sistema Renina-Angiotensina , Factor de Transcripción STAT3/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transducción de Señal , Pulmón/metabolismo , Carcinogénesis
9.
Cancer Res ; 83(11): 1782-1799, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36971490

RESUMEN

Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE: IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.


Asunto(s)
Enfisema , Neoplasias Pulmonares , Enfisema Pulmonar , Humanos , Enfisema/metabolismo , Enfisema/patología , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Pulmón/patología , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/genética , Células Madre/metabolismo , Neoplasias Pulmonares/patología
10.
Biochem Pharmacol ; 211: 115507, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958677

RESUMEN

The heat shock protein (HSP) system is essential for the conformational stability and function of several proteins. Therefore, the development of efficacious HSP-targeting anticancer agents with minimal toxicity is required. We previously demonstrated that evodiamine is an anticancer agent that targets HSP70 in non-small cell lung cancer (NSCLC) cells. In this study, we synthesized a series of evodiamine derivatives with improved efficacy and limited toxicity. Among the 14 evodiamine derivatives, EV408 (10-hydroxy-14-methyl-8,13,13b,14-tetrahydroindolo[2',3':3,4]pyrido[2,1-b]quinazolin-5(7H)-one) exhibited the most potent inhibitory effects on viability and colony formation under anchorage-dependent and -independent culture conditions in various human NSCLC cells, including those that are chemoresistant, by inducing apoptosis. In addition, EV408 suppressed the cancer stem-like cell (CSC) population of NSCLC cells and the expression of stemness-associated markers. Mechanistically, EV408 inhibited HSP70 function by directly binding and destabilizing the HSP70 protein. Furthermore, EV408 significantly inhibited the growth of NSCLC cell line tumor xenografts without overt toxicity. Additionally, EV408 had a negligible effect on the viability of normal cells. These results suggest the potential of EV408 as an efficacious HSP70-targeting evodiamine derivative with limited toxicity that inhibits both non-CSC and CSC populations in NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Proteínas de Choque Térmico
11.
Clin Transl Med ; 12(7): e986, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35858011

RESUMEN

BACKGROUND: Programmed death-ligand 1 (PD-L1) has functional roles in cancer stem-like cell (CSC) phenotypes and chemoresistance besides immune evasion. Chemotherapy is a common treatment choice for colorectal cancer (CRC) patients; however, chemoresistance limits its effectiveness of treatment. METHODS: We examined the role of S100A14 (SA14) in CRC by adopting PD-L1high subpopulations within CRC cell lines and patient tumours, by establishing PD-L1high chemoresistant CRC sublines through prolonged exposure to 5-fluorouracil/oxaliplatin-based chemotherapy in vitro and in vivo, and by analysing a public database. RESULTS: We identified a novel function of SA14 as a regulator of immune surveillance, major CSC phenotypes, and survival capacity under hostile microenvironments, including those harbouring chemotherapeutics, and as a prognostic biomarker in CRC. Mechanistically, SA14 inhibits PD-L1 expression by directly interacting with signal transducer and activator of transcription 3 (STAT3) and inducing its proteasome-mediated degradation. While gain-of-SA14 causes loss of PD-L1 expression and tumourigenic potential and sensitisation to chemotherapy-induced apoptosis in chemoresistant CRC cells, loss-of-SA14 causes increases in PD-L1 expression, tumourigenic potential, and chemoresistance in vitro and in vivo. We further show that a combinatorial treatment with chemotherapy and recombinant SA14 protein effectively induces apoptosis in PD-L1high chemoresistant CRC cells. CONCLUSIONS: Our results suggest that SA14-based therapy is an effective strategy to prevent tumour progression and that SA14 is a predictive biomarker for anti-PD-L1 immunotherapy and chemotherapy in combination.


Asunto(s)
Neoplasias Colorrectales , Factor de Transcripción STAT3 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Unión al Calcio , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Evasión Inmune , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Microambiente Tumoral
12.
J Exp Clin Cancer Res ; 41(1): 133, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395804

RESUMEN

BACKGROUND: Cancer stem-like cells (CSCs) play a pivotal role in lung tumor formation and progression. Nerve injury-induced protein 1 (Ninjurin1, Ninj1) has been implicated in lung cancer; however, the pathological role of Ninj1 in the context of lung tumorigenesis remains largely unknown. METHODS: The role of Ninj1 in the survival of non-small cell lung cancer (NSCLC) CSCs within microenvironments exhibiting hazardous conditions was assessed by utilizing patient tissues and transgenic mouse models where Ninj1 repression and oncogenic KrasG12D/+ or carcinogen-induced genetic changes were induced in putative pulmonary stem cells (SCs). Additionally, NSCLC cell lines and primary cultures of patient-derived tumors, particularly Ninj1high and Ninj1low subpopulations and those with gain- or loss-of-Ninj1 expression, and also publicly available data were all used to assess the role of Ninj1 in lung tumorigenesis. RESULTS: Ninj1 expression is elevated in various human NSCLC cell lines and tumors, and elevated expression of this protein can serve as a biomarker for poor prognosis in patients with NSCLC. Elevated Ninj1 expression in pulmonary SCs with oncogenic changes promotes lung tumor growth in mice. Ninj1high subpopulations within NSCLC cell lines, patient-derived tumors, and NSCLC cells with gain-of-Ninj1 expression exhibited CSC-associated phenotypes and significantly enhanced survival capacities in vitro and in vivo in the presence of various cell death inducers. Mechanistically, Ninj1 forms an assembly with lipoprotein receptor-related protein 6 (LRP6) through its extracellular N-terminal domain and recruits Frizzled2 (FZD2) and various downstream signaling mediators, ultimately resulting in transcriptional upregulation of target genes of the LRP6/ß-catenin signaling pathway. CONCLUSIONS: Ninj1 may act as a driver of lung tumor formation and progression by protecting NSCLC CSCs from hostile microenvironments through ligand-independent activation of LRP6/ß-catenin signaling.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Moléculas de Adhesión Celular Neuronal , Neoplasias Pulmonares , Factores de Crecimiento Nervioso , Vía de Señalización Wnt , Animales , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular Tumoral , Receptores Frizzled , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Neoplasias Pulmonares/patología , Ratones , Factores de Crecimiento Nervioso/genética , Microambiente Tumoral , beta Catenina/metabolismo
14.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393490

RESUMEN

Slow-cycling/dormant cancer cells (SCCs) have pivotal roles in driving cancer relapse and drug resistance. A mechanistic explanation for cancer cell dormancy and therapeutic strategies targeting SCCs are necessary to improve patient prognosis, but are limited because of technical challenges to obtaining SCCs. Here, by applying proliferation-sensitive dyes and chemotherapeutics to non-small cell lung cancer (NSCLC) cell lines and patient-derived xenografts, we identified a distinct SCC subpopulation that resembled SCCs in patient tumors. These SCCs displayed major dormancy-like phenotypes and high survival capacity under hostile microenvironments through transcriptional upregulation of regulator of G protein signaling 2 (RGS2). Database analysis revealed RGS2 as a biomarker of retarded proliferation and poor prognosis in NSCLC. We showed that RGS2 caused prolonged translational arrest in SCCs through persistent eukaryotic initiation factor 2 (eIF2α) phosphorylation via proteasome-mediated degradation of activating transcription factor 4 (ATF4). Translational activation through RGS2 antagonism or the use of phosphodiesterase 5 inhibitors, including sildenafil (Viagra), promoted ER stress-induced apoptosis in SCCs in vitro and in vivo under stressed conditions, such as those induced by chemotherapy. Our results suggest that a low-dose chemotherapy and translation-instigating pharmacological intervention in combination is an effective strategy to prevent tumor progression in NSCLC patients after rigorous chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas , Proteínas RGS/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas RGS/genética , Recurrencia , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Arch Pharm Res ; 43(5): 540-552, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32430718

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the leading cause of human death worldwide. Currently available therapies for COPD mainly relieve symptoms and preserve lung function, suggesting the need to develop novel therapeutic or preventive regimens. Because chronic inflammation is a mechanism of emphysematous lesion formation and because adenosine A3 receptor signaling and peroxisome proliferator-activated receptor gamma (PPARγ) regulate inflammation, we investigated the effect of LJ-529, a selective adenosine A3 receptor agonist and partial PPARγ agonist, on inflammation in vitro and elastase-induced pulmonary emphysema in vivo. LJ-529 markedly ameliorated elastase-induced emphysematous lesion formation in the lungs in vivo, as indicated by the restoration of pulmonary function, suppression of airspace enlargement, and downregulation of elastase-induced matrix metalloproteinase activity and apoptotic cell death in the lungs. LJ-529 induced the expression of PPARγ target genes, the activity of PPARγ and several cytokines involved in inhibiting inflammation and inducing anti-inflammatory M2-like phenotypes. Moreover, LJ-529 did not exhibit significant cytotoxicity in normal cell lines derived from various organs in vitro and induced minimal changes in body weight in vivo, suggesting no overt toxicity of LJ-529 in vitro or in vivo. These results indicate the potential of LJ-529 as a novel therapeutic/preventive agent for emphysema with limited toxicity.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/análogos & derivados , Antiinflamatorios/farmacología , PPAR gamma/agonistas , Enfisema Pulmonar/tratamiento farmacológico , Receptor de Adenosina A3/metabolismo , Tionucleósidos/farmacología , Adenosina/administración & dosificación , Adenosina/farmacología , Agonistas del Receptor de Adenosina A3/administración & dosificación , Administración Oral , Animales , Antiinflamatorios/administración & dosificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos , PPAR gamma/genética , Elastasa Pancreática/antagonistas & inhibidores , Elastasa Pancreática/metabolismo , Enfisema Pulmonar/metabolismo , Tionucleósidos/administración & dosificación
16.
Cancers (Basel) ; 12(4)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276500

RESUMEN

Metabolic rewiring to utilize aerobic glycolysis is a hallmark of cancer. However, recent findings suggest the role of mitochondria in energy generation in cancer cells and the metabolic switch to oxidative phosphorylation (OXPHOS) in response to the blockade of glycolysis. We previously demonstrated that the antitumor effect of gracillin occurs through the inhibition of mitochondrial complex II-mediated energy production. Here, we investigated the potential of gracillin as an anticancer agent targeting both glycolysis and OXPHOS in breast and lung cancer cells. Along with the reduction in adenosine triphosphate (ATP) production, gracillin markedly suppresses the production of several glycolysis-associated metabolites. A docking analysis and enzyme assay suggested phosphoglycerate kinase 1 (PGK1) is a potential target for the antiglycolytic effect of gracillin. Gracillin reduced the viability and colony formation ability of breast cancer cells by inducing apoptosis. Gracillin displayed efficacious antitumor effects in mice bearing breast cancer cell line or breast cancer patient-derived tumor xenografts with no overt changes in body weight. An analysis of publicly available datasets further suggested that PGK1 expression is associated with metastasis status and poor prognosis in patients with breast cancer. These results suggest that gracillin is a natural anticancer agent that inhibits both glycolysis and mitochondria-mediated bioenergetics.

17.
Biomol Ther (Seoul) ; 28(3): 250-258, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32062956

RESUMEN

Emphysema, a major component of chronic obstructive pulmonary disease (COPD), is a leading cause of human death worldwide. The progressive deterioration of lung function that occurs in the disease is caused by chronic inflammation of the airway and destruction of the lung parenchyma. Despite the main impact of inflammation on the pathogenesis of emphysema, current therapeutic regimens mainly offer symptomatic relief and preservation of lung function with little therapeutic impact. In the present study, we aimed to discover novel therapeutics that suppress the pathogenesis of emphysema. Here, we show that LJ-2698, a novel and highly selective antagonist of the adenosine A3 receptor, a G protein-coupled receptor involved in various inflammatory diseases, significantly reversed the elastase-induced destructive changes in murine lungs. We found that LJ-2698 significantly prevented elastase-induced airspace enlargement, resulting in restoration of pulmonary function without causing any obvious changes in body weight in mice. LJ-2698 was found to inhibit matrix metalloproteinase activity and pulmonary cell apoptosis in the murine lung. LJ-2698 treatment induced increases in anti-inflammatory cytokines in macrophages at doses that displayed no significant cytotoxicity in normal cell lines derived from various organs. Treatment with LJ-2698 significantly increased the number of anti-inflammatory M2 macrophages in the lungs. These results implicate the adenosine A3 receptor in the pathogenesis of emphysema. Our findings also demonstrate the potential of LJ-2698 as a novel therapeutic/preventive agent in suppressing disease development with limited toxicity.

18.
Sci Rep ; 8(1): 13924, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224681

RESUMEN

Despite the development of advanced therapeutic regimens such as molecular targeted therapy and immunotherapy, the 5-year survival of patients with lung cancer is still less than 20%, suggesting the need to develop additional treatment strategies. The molecular chaperone heat shock protein 90 (Hsp90) plays important roles in the maturation of oncogenic proteins and thus has been considered as an anticancer therapeutic target. Here we show the efficacy and biological mechanism of a Hsp90 inhibitor NCT-50, a novobiocin-deguelin analog hybridizing the pharmacophores of these known Hsp90 inhibitors. NCT-50 exhibited significant inhibitory effects on the viability and colony formation of non-small cell lung cancer (NSCLC) cells and those carrying resistance to chemotherapy. In contrast, NCT-50 showed minimal effects on the viability of normal cells. NCT-50 induced apoptosis in NSCLC cells, inhibited the expression and activity of several Hsp90 clients including hypoxia-inducible factor (HIF)-1α, and suppressed pro-angiogenic effects of NSCLC cells. Further biochemical and in silico studies revealed that NCT-50 downregulated Hsp90 function by interacting with the C-terminal ATP-binding pocket of Hsp90, leading to decrease in the interaction with Hsp90 client proteins. These results suggest the potential of NCT-50 as an anticancer Hsp90 inhibitor.


Asunto(s)
Antineoplásicos/síntesis química , Benzopiranos/síntesis química , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias Pulmonares/patología , Piridinas/síntesis química , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Benzopiranos/farmacología , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/metabolismo , Piridinas/farmacología
19.
Oncotarget ; 9(28): 19911-19928, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29731993

RESUMEN

Here, we investigated whether over-activation of AKT pathway is important in the resistance to 5-fluorouracil (5-FU) in SNU-C5/5-FU cells, 5-FU-resistant human colon cancer cells. When compared to wild type SNU-C5 cells (WT), SNU-C5/5-FU cells showed over-activation of PI3K/AKT pathway, like increased phosphorylation of AKT, mTOR, and GSK-3ß, nuclear localization of ß-catenin, and decreased E-cadherin. Moreover, E-cadherin level was down-regulated in recurrent colon cancer tissues compared to primary colon cancer tissues. Gene silencing of AKT1 or treatment of LY294002 (PI3 kinase inhibitor) increased E-cadherin, whereas decreased phospho-GSK-3ß. LY294002 also reduced protein level of ß-catenin with no influence on mRNA level. PTEN level was higher in SNU-C5/WT than SNU-C5/5-FU cells, whereas the loss of PETN in SNU-C5/WT cells induced characteristics of SNU-C5/5-FU cells. In SNU-C5/5-FU cells, NF-κB signaling was activated, along with the overexpression of COX-2 and stabilization of survivin. However, increased COX-2 contributed to the stabilization of survivin, which directly interacts with cytoplasmic procaspase-3, while the inhibition of AKT reduced this cascade. We finally confirmed that combination treatment with 5-FU and LY294002 or Vioxx could induce apoptosis in SNU-C5/5-FU cells. These data suggest that inhibition of AKT activation may overcome 5-FU-resistance in SNU-C5/5-FU cells. These findings provide evidence that over-activation of AKT is crucial for the acquisition of resistance to anticancer drugs and AKT pathway could be a therapeutic target for cancer treatment.

20.
Oncotarget ; 7(43): 70936-70947, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27708216

RESUMEN

Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via ß-adrenergic receptor (ß-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of ß-AR and the downstream signaling including a Gßγ subunit of ß-AR and phospholipase C (PLC). Consistently, ß-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via ß-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with ß-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking ß-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.


Asunto(s)
Carcinogénesis/patología , Carcinógenos/farmacología , Neoplasias Pulmonares/prevención & control , Nitrosaminas/farmacología , Receptores Adrenérgicos beta/metabolismo , Receptores de Somatomedina/metabolismo , Transducción de Señal/efectos de los fármacos , Fumar/efectos adversos , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Carcinogénesis/inducido químicamente , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Ratones , FN-kappa B/metabolismo , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/patología , Neoplasias Experimentales/prevención & control , Fosforilación/efectos de los fármacos , Receptor IGF Tipo 1 , Factor de Transcripción STAT3/metabolismo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...