Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ned Tijdschr Geneeskd ; 1682024 Apr 17.
Artículo en Holandés | MEDLINE | ID: mdl-38630094

RESUMEN

Shoulder dislocations remain the most frequent of joint dislocations, with anterior displacement of the humeral head being the direction of dislocation seen most often (97%). Recently, the Dutch clinical guideline on shoulder dislocations has been revised on the basis of predetermined bottlenecks in clinical practice. In this paper, the guideline is translated to clinical practice by means of two fictional cases, in which the novel recommendations are incorporated. The following topics were systematically assessed based on the best available scientific evidence: primary diagnostics, reduction techniques, painmedication/ sedation surrounding reduction and the need for physiotherapy, stabilization surgery and immobilization. Also, a best practice care pathway is advocated. Since scientific evidence is often inconclusive to provide undebatable therapeutic rules, the committee graded the available evidence and additionally used expert opinion to carefully draft recommendations. The paper concludes with an overview of all the recommendations stated in the updated multidisciplinary guideline.


Asunto(s)
Anestesia , Luxaciones Articulares , Luxación del Hombro , Humanos , Hombro , Luxación del Hombro/terapia , Etnicidad
2.
Mol Cell Endocrinol ; 541: 111501, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740745

RESUMEN

Corticosteroid receptors in the mammalian brain mediate genomic as well as non-genomic actions. Although receptors mediating genomic actions were already cloned 35 years ago, it remains unclear whether the same molecules are responsible for the non-genomic actions or that the latter involve a separate class of receptors. Here we focus on one type of corticosteroid receptors, i.e. the mineralocorticoid receptor (MR). We summarize some of the known properties and the current insight in the localization of the MR in peripheral cells and neurons, especially in relation to non-genomic signaling. Previous studies from our own and other labs provided evidence that MRs mediating non-genomic actions are identical to the ones involved in genomic signaling, but may be translocated to the plasma cell membrane instead of the nucleus. With fixed cell imaging and live cell imaging techniques we tried to visualize these presumed membrane-associated MRs, using antibodies or overexpression of MR-GFP in COS7 and hippocampal cultured neurons. Despite the physiological evidence for MR location in or close to the cell membrane, we could not convincingly visualize membrane localization of endogenous MRs or GFP-MR molecules. However, we did find punctae of labeled antibodies intracellularly, which might indicate transactivating spots of MR near the membrane. We also found some evidence for trafficking of MR via beta-arrestins. In beta-arrestin knockout mice, we didn't observe metaplasticity in the basolateral amygdala anymore, indicating that internalization of MRs could play a role during corticosterone activation. Furthermore, we speculate that membrane-associated MRs could act indirectly via activating other membrane located structures like e.g. GPER and/or receptor tyrosine kinases.


Asunto(s)
Membrana Celular/metabolismo , Receptores de Mineralocorticoides/fisiología , Animales , Citoplasma/metabolismo , Humanos , Ratones , Ratones Noqueados , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal/fisiología
3.
Endocrinology ; 160(4): 791-802, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689790

RESUMEN

The hypothalamic-pituitary-adrenal axis involves timed signaling between the hypothalamus, pituitary, and adrenal glands and back to the brain, causing an inherently oscillating system. Corticosteroids such as corticosterone (CORT) are secreted in a circadian rhythm, characterized by low and high levels at the start of the inactive and active phases, respectively. The circadian rhythm overarches ultradian CORT pulses, with approximate 1-hour interpulse intervals. We examined the physiological relevance of pulsatile CORT exposure for neurons of the basolateral amygdala (BLA), an area important for fear learning. We first applied four pulses of equal, high CORT concentration and measured the frequency of miniature excitatory postsynaptic currents (mEPSCs) reflecting spontaneous glutamate signaling. BLA neurons responded differently to each pulse, showing "metaplasticity," extending earlier studies. Next, we mimicked the progression of the inactive and active phases by four CORT pulses of increasing and decreasing concentrations, respectively. CORT pulses of increasing concentration were necessary and sufficient to gradually increase baseline (between-pulse) mEPSC frequency during the mimicked inactive phase, whereas the opposite was seen with decreasing CORT levels during the mimicked active phase. To study the relevance of changed glutamate transmission on behavior, mice were tested in tone-cued fear conditioning during the active or inactive phase. Animals tested at the inactive compared with the active phase showed efficient fear learning; this was also observed when animals tested during the active phase were treated with the CORT synthesis blocker metyrapone. This suggests that natural CORT rhythms influence electrical activity in the BLA, possibly contributing to altered behavioral function.


Asunto(s)
Complejo Nuclear Basolateral/efectos de los fármacos , Ritmo Circadiano/fisiología , Corticosterona/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Animales , Complejo Nuclear Basolateral/fisiología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Miedo/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Ratones , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Sistema Hipófiso-Suprarrenal/fisiología
4.
Best Pract Res Clin Endocrinol Metab ; 31(5): 445-457, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29223280

RESUMEN

The hypothalamo-pituitary-adrenal (HPA) axis comprises interactions between the hypothalamus, the pituitary and the adrenal glands and its activation results in the release of corticosteroid hormones. Corticosteroids are secreted from the adrenal gland in a distinct 24-h circadian rhythm overarching an ultradian rhythm, which consists of hourly corticosteroid pulses exposing target tissues to rapidly changing steroid levels. On top of these rhythms surges can take place after stress. HPA-axis rhythms promote adaptation to predictable (i.e. the earth's rotation) and unpredictable (i.e. stressors) changes in environmental factors. Two steroid hormone receptors, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are activated by corticosteroids and mediate effects at fast and slow timescales on e.g. glucose availability, gene transcription and synaptic plasticity. The current review discusses the origin of the circadian and ultradian corticosteroid rhythms and their relevance for gene regulation, neuroendocrine and physiological responses to stress and the involvement in the maintenance of brain functionality in rodents.


Asunto(s)
Encéfalo/fisiología , Ritmo Circadiano/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Roedores/fisiología , Ritmo Ultradiano/fisiología , Corticoesteroides/sangre , Animales
5.
Pflugers Arch ; 467(7): 1551-1564, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25081244

RESUMEN

Activation of the endocannabinoid (eCB) system by exogenous cannabinoids (drug abuse) can alter the physiology of the brain circuits involved in higher-order cognitive functions such as the medial prefrontal cortex (mPFC). A proper balance between excitation and inhibition (E/I balance) is critical for neuronal network oscillations underlying cognitive functions. Since type-1 cannabinoid receptors (CB1Rs), expressed in many brain areas including the mPFC, can modulate excitatory and inhibitory neurotransmission, we aimed to determine whether CB1R activation results in modifications of the E/I balance. We first confirm the presence of functional presynaptic CB1Rs that can modulate both excitatory and inhibitory inputs to layer II/III pyramidal neurons of the prelimbic (PL) area of the mPFC. By decomposing the synaptic response evoked by layer I stimulation into its excitatory and inhibitory components, we show that in vitro CB1R activation with the cannabinoid receptor agonists WIN55,212-2 (WIN) and CP-55940 (CP) modulates the balance between excitation and inhibition (E/I balance) of layer II/III pyramidal neurons. This treatment caused a significant shift of the E/I balance towards excitation, from 18/82 % to 25/75 % (WIN) and from 17/83 to 30/70 % (CP). Finally, when animals were injected with a cannabinoid receptor agonist, we observed a shift of the E/I balance (measured in vitro) towards excitation 1 h after WIN (24/76 %) or after CP injection (30/70 %) when compared to vehicle-injected animals (18/82 %). This modulation of the E/I balance by CB1Rs may thus be fundamental in the regulation of local PL cortical network excitability and could be the mechanism through which excessive CB1R activation (cannabis abuse) affects cognitive functions.


Asunto(s)
Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Células Cultivadas , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/agonistas
6.
Pflugers Arch ; 466(12): 2257-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24671573

RESUMEN

The functional presence of type-2 cannabinoid receptors (CB2Rs) in layer II/III pyramidal neurons of the rat medial prefrontal cortex (mPFC) was recently demonstrated. In the present study, we show that the application of the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and methanandamide [a stable analog of the eCB anandamide (AEA)] can activate CB2Rs of mPFC layer II/III pyramidal neurons, which subsequently induces a Cl(-) current. In addition, we show that action potential (AP) firing evoked by 20-Hz current injections results in an eCB-mediated opening of Cl(-) channels via CB2R activation. This AP-evoked synthesis of eCBs is dependent on the Ca(2+) influx through N-type voltage-gated calcium channels. Our results indicate that 2-AG is the main eCB involved in this process. Finally, we demonstrate that under physiologically relevant intracellular Cl(-) conditions, 20-Hz AP firing leads to a CB2R-dependent reduction in neuronal excitability. Altogether, our data indicate that eCBs released upon action potential firing can modulate, through CB2R activation, neuronal activity in the mPFC. We discuss how this may be a mechanism to prevent excessive neuronal firing.


Asunto(s)
Potenciales de Acción , Ácidos Araquidónicos/farmacología , Cloruros/metabolismo , Endocannabinoides/farmacología , Glicéridos/farmacología , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Canales de Calcio Tipo N/metabolismo , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptor Cannabinoide CB2/genética
7.
Proc Natl Acad Sci U S A ; 109(9): 3534-9, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331871

RESUMEN

The endocannabinoid (eCB) system is widely expressed throughout the central nervous system (CNS) and the functionality of type-1 cannabinoid receptors in neurons is well documented. In contrast, there is little knowledge about type-2 cannabinoid receptors (CB(2)Rs) in the CNS. Here, we show that CB(2)Rs are located intracellularly in layer II/III pyramidal cells of the rodent medial prefrontal cortex (mPFC) and that their activation results in IP(3)R-dependent opening of Ca(2+)-activated Cl(-) channels. To investigate the functional role of CB(2)R activation, we induced neuronal firing and observed a CB(2)R-mediated reduction in firing frequency. The description of this unique CB(2)R-mediated signaling pathway, controlling neuronal excitability, broadens our knowledge of the influence of the eCB system on brain function.


Asunto(s)
Corteza Prefrontal/citología , Células Piramidales/fisiología , Receptor Cannabinoide CB2/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Cannabinoides/farmacología , Canales de Cloruro/metabolismo , Membranas Intracelulares/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Corteza Prefrontal/fisiología , Ratas , Ratas Wistar , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/deficiencia , Receptor Cannabinoide CB2/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sulfonamidas/farmacología , Sulfonas/farmacología
8.
Eur J Med Chem ; 46(10): 5086-98, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21885167

RESUMEN

The discovery, synthesis and structure-activity relationship (SAR) of a novel series of cannabinoid 1 (CB(1)) and cannabinoid 2 (CB(2)) receptor ligands are reported. Based on the aminoalkylindole class of cannabinoid receptor agonists, a biphenyl moiety was introduced as novel lipophilic indole 3-acyl substituent in 11-16. Furthermore, the 3-carbonyl tether was replaced with a carboxamide linker in 17-20 and the azaindole (pyrrolopyridine) nucleus was designed as indole bioisostere with improved physicochemical properties in 21-25. Through these SAR efforts, several high affinity CB(1)/CB(2) dual cannabinoid receptor ligands were identified. Indole-3-carboxamide 17 displayed single-digit nanomolar affinity and ~80 fold selectivity for CB(1) over the CB(2) receptor. The azaindoles displayed substantially improved physicochemical properties (lipophilicity; aqueous solubility). Azaindole 21 elicited potent cannabinoid activity. Cannabinoid receptor agonists 17 and 21 potently modulated excitatory synaptic transmission in an acute rat brain slice model of cannabinoid receptor-modulated neurotransmission.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Indoles/química , Indoles/farmacología , Receptores de Cannabinoides/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Cricetinae , Humanos , Indoles/síntesis química , Ligandos , Masculino , Ratas , Ratas Wistar , Receptor Cannabinoide CB2/agonistas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA