Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(19): eadd1595, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728398

RESUMEN

Large-scale, explosive volcanic eruptions are one of the Earth's most hazardous natural phenomena. We demonstrate that their size, frequency, and composition can be explained by processes in long-lived, high-crystallinity source reservoirs that control the episodic creation of large volumes of eruptible silicic magma and its delivery to the subvolcanic chamber where it is stored before eruption. Melt percolates upward through the reservoir and accumulates a large volume of low-crystallinity silicic magma which remains trapped until buoyancy causes magma-driven fractures to propagate into the overlying crust, allowing rapid magma transfer from the reservoir into the chamber. Ongoing melt percolation in the reservoir accumulates a new magma layer and the process repeats. Our results suggest that buoyancy, rather than crystallinity, is the key control on magma delivery from the source reservoir. They identify an optimum reservoir size for the largest silicic eruptions that is consistent with data from natural systems and explain why larger magnitude eruptions are not observed on Earth.

2.
J Nutr ; 154(7): 2053-2064, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797481

RESUMEN

BACKGROUND: Industrial processing can alter the structural complexity of dietary proteins and, potentially, their digestion and absorption upon ingestion. High-moisture extrusion (HME), a common processing method used to produce meat alternative products, affects in vitro digestion, but human data are lacking. We hypothesized that HME of a mycoprotein/pea protein blend would impair in vitro digestion and in vivo postprandial plasma amino acid availability. METHODS: In Study A, 9 healthy volunteers completed 2 experimental trials in a randomized, double-blind, crossover design. Participants consumed a beverage containing 25 g protein from a "dry" blend (CON) of mycoprotein/pea protein (39%/61%) or an HME content-matched blend (EXT). Arterialized venous blood samples were collected in the postabsorptive state and regularly over a 5-h postprandial period to assess plasma amino acid concentrations. In Study B, in vitro digestibility of the 2 beverages were assessed using bicinchoninic acid assay and optical fluorescence microscopy at baseline and during and following gastric and intestinal digestion using the INFOGEST model of digestion. RESULTS: Protein ingestion increased plasma total, essential (EAA), and branched-chain amino acid (BCAA) concentrations (time effect, P < 0.0001) but more rapidly and to a greater magnitude in the CON compared with the EXT condition (condition × time interaction, P < 0.0001). This resulted in greater plasma availability of EAA and BCAA concentrations during the early postprandial period (0-150 min). These data were corroborated by the in vitro approach, which showed greater protein availability in the CON (2150 ± 129 mg/mL) compared with the EXT (590 ± 41 mg/mL) condition during the gastric phase. Fluorescence microscopy revealed clear structural differences between the 2 conditions. CONCLUSIONS: These data demonstrate that HME delays in vivo plasma amino acid availability following ingestion of a mycoprotein/pea protein blend. This is likely due to impaired gastric phase digestion as a result of HME-induced aggregate formation in the pea protein. This trial was registered at clinicaltrials.gov as NCT05584358.


Asunto(s)
Aminoácidos , Estudios Cruzados , Proteínas en la Dieta , Digestión , Periodo Posprandial , Humanos , Aminoácidos/sangre , Aminoácidos/metabolismo , Adulto , Masculino , Proteínas en la Dieta/administración & dosificación , Femenino , Método Doble Ciego , Adulto Joven , Disponibilidad Biológica , Manipulación de Alimentos , Proteínas de Guisantes
3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139096

RESUMEN

Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class Caudoviricetes, and a greater diversity of DNA viruses including extracellular phages and integrated prophages. Using an in silico approach, we predicted interactions between members of the Anaerotruncus genus and unique viruses present in ME/CFS microbiomes. This study therefore provides a framework and rationale for studies of larger cohorts of patients to further investigate disease-associated interactions between the intestinal virome and the bacteriome.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Viroma , Interacciones Microbiota-Huesped , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...