Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arch Pathol Lab Med ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38749501

RESUMEN

CONTEXT.­: Pediatric B-cell acute lymphoblastic leukemia is genetically and phenotypically heterogeneous, with a genetic landscape including chromosomal translocations that disrupt ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1). OBJECTIVE.­: To characterize an uncommon chromosomal translocation in acute leukemia. DESIGN.­: Genetic testing, including karyotype and fluorescence in situ hybridization (FISH) analysis, was used to determine the underlying genetic aberration driving the disorder and to guide disease classification and risk stratification. More-detailed testing using RNA sequencing was performed, based on the results from these assays. Three-dimensional molecular modeling was used to visualize the impact of aberrant fused transcripts identified by transcriptome profiling. RESULTS.­: Karyotype analysis of the bone marrow demonstrated a complex karyotype with, most notably, a t(9;10)(q34.1;q22) translocation. ABL1 break-apart probe FISH findings supported ABL1 disruption. Bone marrow transcriptome analysis revealed mutant ZMIZ1::ABL1 (ZMIZ1, zinc finger MIZ-type containing 1) fusion transcripts as a consequence of t(9;10)(q34.1;q22). Three-dimensional modeling of the mutant ZMIZ1::ABL1 fusion protein confirmed an altered ABL1 protein structure compared to that of the wild type, suggesting a constitutively active conformation. CONCLUSIONS.­: The t(9;10) translocation resulting in ZMIZ1::ABL1 fusion transcripts is an uncommon form of BCR::ABL1-like (BCR, BCR activator of RhoGEF and GTPase) acute lymphoblastic leukemia. Although the karyotype was complex, identifying the t(9;10)(q34.1;q22) translocation, ABL1 disruption, and ZMIZ1::ABL1 transcript enabled effective ABL1-targeted treatment. Our data support the use of tyrosine kinase inhibitors to treat ZMIZ1::ABL1-derived B-cell acute lymphoblastic leukemia.

3.
Mol Genet Metab ; 139(3): 107628, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37354891

RESUMEN

A 6-yr-old female orangutan presented with a history of dark urine that turned brown upon standing since birth. Repeated routine urinalysis and urine culture were unremarkable. Urine organic acid analysis showed elevation in homogentisic acid consistent with alkaptonuria. Sequence analysis identified a homozygous missense variant, c.1081G>A (p.Gly361Arg), of the homogentisate 1,2-dioxygenase (HGD) gene. Familial studies, molecular modeling, and comparison to human variant databases support this variant as the underlying cause of alkaptonuria in this orangutan. This is the first report of molecular confirmation of alkaptonuria in a nonhuman primate.


Asunto(s)
Alcaptonuria , Pongo abelii , Animales , Humanos , Femenino , Alcaptonuria/diagnóstico , Alcaptonuria/genética , Pongo abelii/genética , Ácido Homogentísico , Mutación Missense , Homocigoto
4.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240244

RESUMEN

Hearing loss and peripheral neuropathy are two clinical entities that are genetically and phenotypically heterogeneous and sometimes co-occurring. Using exome sequencing and targeted segregation analysis, we investigated the genetic etiology of peripheral neuropathy and hearing loss in a large Ashkenazi Jewish family. Moreover, we assessed the production of the candidate protein via western blotting of lysates from fibroblasts from an affected individual and an unaffected control. Pathogenic variants in known disease genes associated with hearing loss and peripheral neuropathy were excluded. A homozygous frameshift variant in the BICD1 gene, c.1683dup (p.(Arg562Thrfs*18)), was identified in the proband and segregated with hearing loss and peripheral neuropathy in the family. The BIDC1 RNA analysis from patient fibroblasts showed a modest reduction in gene transcripts compared to the controls. In contrast, protein could not be detected in fibroblasts from a homozygous c.1683dup individual, whereas BICD1 was detected in an unaffected individual. Our findings indicate that bi-allelic loss-of-function variants in BICD1 are associated with hearing loss and peripheral neuropathy. Definitive evidence that bi-allelic loss-of-function variants in BICD1 cause peripheral neuropathy and hearing loss will require the identification of other families and individuals with similar variants with the same phenotype.


Asunto(s)
Sordera , Pérdida Auditiva , Enfermedades del Sistema Nervioso Periférico , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/genética , Sordera/genética , Pérdida Auditiva/genética , Linaje , Enfermedades del Sistema Nervioso Periférico/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA