Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 1110432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36567942
2.
Open Biol ; 12(7): 220054, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35855589

RESUMEN

How alpha-helical membrane proteins fold correctly in the highly hydrophobic membrane interior is not well understood. Their folding is known to be highly influenced by the lipids within the surrounding bilayer, but the majority of folding studies have focused on detergent-solubilized protein rather than protein in a lipid environment. There are different ways to study folding in lipid bilayers, and each method has its own advantages and disadvantages. This review will discuss folding methods which can be used to study alpha-helical membrane proteins in bicelles, liposomes, nanodiscs or native membranes. These folding methods include in vitro folding methods in liposomes such as denaturant unfolding studies, and single-molecule force spectroscopy studies in bicelles, liposomes and native membranes. This review will also discuss recent advances in co-translational folding studies, which use cell-free expression with liposomes or nanodiscs or are performed in vivo with native membranes.


Asunto(s)
Liposomas , Proteínas de la Membrana , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Conformación Proteica en Hélice alfa , Pliegue de Proteína
3.
Biochem Soc Trans ; 50(1): 555-567, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35212365

RESUMEN

Membrane proteins need to fold with precision in order to function correctly, with misfolding potentially leading to disease. The proteins reside within a hydrophobic lipid membrane and must insert into the membrane and fold correctly, generally whilst they are being translated by the ribosome. Favourable and unfavourable free energy contributions are present throughout each stage of insertion and folding. The unfavourable energy cost of transferring peptide bonds into the hydrophobic membrane interior is compensated for by the favourable hydrophobic effect of partitioning a hydrophobic transmembrane alpha-helix into the membrane. Native membranes are composed of many different types of lipids, but how these different lipids influence folding and the associated free energies is not well understood. Altering the lipids in the bilayer is known to affect the probability of transmembrane helix insertion into the membrane, and lipids also affect protein stability and can promote successful folding. This review will summarise the free energy contributions associated with insertion and folding of alpha helical membrane proteins, as well as how lipids can make these processes more or less favourable. We will also discuss the implications of this work for the free energy landscape during the co-translational folding of alpha helical membrane proteins.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Membrana Dobles de Lípidos/química , Lípidos/química , Proteínas de la Membrana/metabolismo , Conformación Proteica en Hélice alfa , Ribosomas/metabolismo
4.
Front Mol Biosci ; 9: 795212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187078

RESUMEN

The majority of alpha helical membrane proteins fold co-translationally during their synthesis on the ribosome. In contrast, most mechanistic folding studies address refolding of full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation of membrane proteins is emerging as a useful tool to address folding during translation by a ribosome. We summarise the benefits of this approach and show how it can be successfully extended to a membrane protein with a complex topology. The bacterial leucine transporter, LeuT can be synthesised and inserted into lipid membranes using a variety of in vitro transcription translation systems. Unlike major facilitator superfamily transporters, where changes in lipids can optimise the amount of correctly inserted protein, LeuT insertion yields are much less dependent on the lipid composition. The presence of a bacterial translocon either in native membrane extracts or in reconstituted membranes also has little influence on the yield of LeuT incorporated into the lipid membrane, except at high reconstitution concentrations. LeuT is considered a paradigm for neurotransmitter transporters and possesses a knotted structure that is characteristic of this transporter family. This work provides a method in which to probe the formation of a protein as the polypeptide chain is being synthesised on a ribosome and inserting into lipids. We show that in comparison with the simpler major facilitator transporter structures, LeuT inserts less efficiently into membranes when synthesised cell-free, suggesting that more of the protein aggregates, likely as a result of the challenging formation of the knotted topology in the membrane.

5.
Methods Mol Biol ; 2433: 273-292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985751

RESUMEN

In order to comprehend the molecular basis of transmembrane protein biogenesis, methods are required that are capable of investigating the co-translational folding of these hydrophobic proteins. Equally, in artificial cell studies, controllable methods are desirable for in situ synthesis of membrane proteins that then direct reactions in the synthetic cell membrane. Here we describe a method that exploits cell-free expression systems and tunable membrane mimetics to facilitate co-translational studies. Alteration of the lipid bilayer composition improves the efficiency of the folding system. The approach also enables membrane transport proteins to be made and inserted into artificial cell platforms such as droplet interface bilayers. Importantly, this gives a new facet to the droplet networks by enabling specific transport of molecules across the synthetic bilayer against a concentration gradient. This method also includes a protocol to pause and restart translation of membrane proteins at specified positions during their co-translational folding. This stop-start strategy provides an avenue to investigate whether the proteins fold in sequence order, or if the correct fold of N-terminal regions is reliant on the synthesis of downstream residues.


Asunto(s)
Membrana Dobles de Lípidos , Pliegue de Proteína , Sistema Libre de Células/metabolismo , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo
6.
Biophys J ; 120(17): 3787-3794, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34273316

RESUMEN

Cellular life relies on membranes, which provide a resilient and adaptive cell boundary. Many essential processes depend upon the ease with which the membrane is able to deform and bend, features that can be characterized by the bending rigidity. Quantitative investigations of such mechanical properties of biological membranes have primarily been undertaken in solely lipid bilayers and frequently in the absence of buffers. In contrast, much less is known about the influence of integral membrane proteins on bending rigidity under physiological conditions. We focus on an exemplar member of the ubiquitous major facilitator superfamily of transporters and assess the influence of lactose permease on the bending rigidity of lipid bilayers. Fluctuation analysis of giant unilamellar vesicles (GUVs) is a useful means to measure bending rigidity. We find that using a hydrogel substrate produces GUVs that are well suited to fluctuation analysis. Moreover, the hydrogel method is amenable to both physiological salt concentrations and anionic lipids, which are important to mimic key aspects of the native lactose permease membrane. Varying the fraction of the anionic lipid in the lipid mixture DOPC/DOPE/DOPG allows us to assess the dependence of membrane bending rigidity on the topology and concentration of an integral membrane protein in the lipid bilayer of GUVs. The bending rigidity gradually increases with the incorporation of lactose permease, but there is no further increase with greater amounts of the protein in the membrane.


Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilcolinas , Proteínas de Transporte de Membrana , Liposomas Unilamelares
7.
Methods Mol Biol ; 2315: 31-41, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34302668

RESUMEN

Droplet interface bilayers (DIBs) are an emerging tool within synthetic biology that aims to recreate biological processes in artificial cells. A critical component for the utility of these bilayers is controlled flow between compartments and, notably, uphill transport against a substrate concentration gradient. A versatile method to achieve the desired flow is to exploit the specificity of membrane proteins that regulate the movement of ions and transport of specific metabolic compounds. Methods have been in existence for some time to synthesize proteins within a droplet as well as incorporate membrane proteins into DIBS; however, there have been few reports combining synthesis and DIB incorporation for membrane transporters that demonstrate specific, uphill transport. This chapter presents two methods for the incorporation of a membrane transporter into a simple two-droplet DIB system, with the downhill and uphill transport reaction readily monitored by fluorescence microscopy.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Iones/metabolismo , Microscopía Fluorescente/métodos , Movimiento/fisiología
8.
Chem Sci ; 12(6): 2138-2145, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34163978

RESUMEN

Droplet microcompartments linked by lipid bilayers show great promise in the construction of synthetic minimal tissues. Central to controlling the flow of information in these systems are membrane proteins, which can gate in response to specific stimuli in order to control the molecular flux between membrane separated compartments. This has been demonstrated with droplet interface bilayers (DIBs) using several different membrane proteins combined with electrical, mechanical, and/or chemical activators. Here we report the activation of the bacterial mechanosensitive channel of large conductance (MscL) in a dioleoylphosphatidylcholine:dioleoylphosphatidylglycerol DIB by controlling membrane asymmetry. We show using electrical measurements that the incorporation of lysophosphatidylcholine (LPC) into one of the bilayer leaflets triggers MscL gating in a concentration-dependent manner, with partial and full activation observed at 10 and 15 mol% LPC respectively. Our findings could inspire the design of new minimal tissues where flux pathways are dynamically defined by lipid composition.

9.
Biochim Biophys Acta Biomembr ; 1863(7): 183602, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33744253

RESUMEN

Structure and function analysis of human membrane proteins in lipid bilayer environments is acutely lacking despite the fundame1ntal cellular importance of these proteins and their dominance of drug targets. An underlying reason is that detailed study usually requires a potentially destabilising detergent purification of the proteins from their host membranes prior to subsequent reconstitution in a membrane mimic; a situation that is exacerbated for human membrane proteins due to the inherent difficulties in overexpressing suitable quantities of the proteins. We advance the promising styrene maleic acid polymer (SMA) extraction approach to introduce a detergent-free method of obtaining stable, functional human membrane transporters in bilayer nanodiscs directly from yeast cells. We purify the human serotonin transporter (hSERT) following overexpression in Pichia pastoris using diisobutylene maleic acid (DIBMA) as a superior method to traditional detergents or the more established styrene maleic acid polymer. hSERT plays a pivotal role in neurotransmitter regulation being responsible for the transport of the neurotransmitter 5-hydroxytryptamine (5-HT or serotonin). It is representative of the neurotransmitter sodium symporter (NSS) family, whose importance is underscored by the numerous diseases attributed to their malfunction. We gain insight into hSERT activity through an in vitro transport assay and find that DIBMA extraction improves the thermostability and activity of hSERT over the conventional detergent method.


Asunto(s)
Alquenos/química , Maleatos/química , Polímeros/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Humanos , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/aislamiento & purificación , Temperatura
10.
Nat Commun ; 11(1): 6162, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268777

RESUMEN

Proton-coupled transporters use transmembrane proton gradients to power active transport of nutrients inside the cell. High-resolution structures often fail to capture the coupling between proton and ligand binding, and conformational changes associated with transport. We combine HDX-MS with mutagenesis and MD simulations to dissect the molecular mechanism of the prototypical transporter XylE. We show that protonation of a conserved aspartate triggers conformational transition from outward-facing to inward-facing state. This transition only occurs in the presence of substrate xylose, while the inhibitor glucose locks the transporter in the outward-facing state. MD simulations corroborate the experiments by showing that only the combination of protonation and xylose binding, and not glucose, sets up the transporter for conformational switch. Overall, we demonstrate the unique ability of HDX-MS to distinguish between the conformational dynamics of inhibitor and substrate binding, and show that a specific allosteric coupling between substrate binding and protonation is a key step to initiate transport.


Asunto(s)
Proteínas de Escherichia coli/química , Glucosa/química , Protones , Simportadores/química , Xilosa/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucosa/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Cinética , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo , Termodinámica , Xilosa/metabolismo
11.
Nat Commun ; 11(1): 5565, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149158

RESUMEN

Resistance-nodulation-division efflux pumps play a key role in inherent and evolved multidrug resistance in bacteria. AcrB, a prototypical member of this protein family, extrudes a wide range of antimicrobial agents out of bacteria. Although high-resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown. Here, we determine these structural dynamics in the presence of substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular dynamics simulations, and bacterial susceptibility studies. We show that an efflux pump inhibitor potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within a multidrug resistant clinical isolate modifies the plasticity of the transport pathway, which could explain its altered substrate efflux. Our results provide insight into the molecular mechanism of drug export and inhibition of a major multidrug efflux pump and the directive role of its dynamics.


Asunto(s)
Ciprofloxacina/farmacología , Dipéptidos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Quinasas/química , Antibacterianos/química , Antibacterianos/farmacología , Sitios de Unión/genética , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/genética , Ciprofloxacina/química , Dicroismo Circular , Deuterio/química , Dipéptidos/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Espectrometría de Masas/métodos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
12.
Biochemistry ; 59(30): 2764-2775, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32627541

RESUMEN

Co-translational folding studies of membrane proteins lag behind cytosolic protein investigations largely due to the technical difficulty in maintaining membrane lipid environments for correct protein folding. Stalled ribosome-bound nascent chain complexes (RNCs) can give snapshots of a nascent protein chain as it emerges from the ribosome during biosynthesis. Here, we demonstrate how SecM-facilitated nascent chain stalling and native nanodisc technologies can be exploited to capture in vivo-generated membrane protein RNCs within their native lipid compositions. We reveal that a polytopic membrane protein can be successfully stalled at various stages during its synthesis and the resulting RNC extracted within either detergent micelles or diisobutylene-maleic acid co-polymer native nanodiscs. Our approaches offer tractable solutions for the structural and biophysical interrogation of nascent membrane proteins of specified lengths, as the elongating nascent chain emerges from the ribosome and inserts into its native lipid milieu.


Asunto(s)
Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Alquenos/química , Secuencia de Aminoácidos , Maleatos/química , Micelas , Nanopartículas/química , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas/química , Canales de Translocación SEC/metabolismo
13.
Sci Rep ; 10(1): 9125, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499529

RESUMEN

Most helical membrane proteins fold co-translationally during unidirectional polypeptide elongation by the ribosome. Studies thus far, however, have largely focussed on refolding full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation offers opportunities to remedy this deficit in folding studies and has previously been used for membrane proteins. We exploit this cell-free approach to develop tools to probe co-translational folding. We show that two transporters from the ubiquitous Major Facilitator Superfamily can successfully insert into a synthetic bilayer without the need for translocon insertase apparatus that is essential in vivo. We also assess the cooperativity of domain insertion, by expressing the individual transporter domains cell-free. Furthermore, we manipulate the cell-free reaction to pause and re-start protein synthesis at specific points in the protein sequence. We find that full-length protein can still be made when stalling after the first N terminal helix has inserted into the bilayer. However, stalling after the first three helices have exited the ribosome cannot be successfully recovered. These three helices cannot insert stably when ribosome-bound during co-translational folding, as they require insertion of downstream helices.


Asunto(s)
Proteínas de Transporte de Membrana/química , Sistema Libre de Células , Bases de Datos de Proteínas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liposomas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutagénesis Sitio-Dirigida , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Simportadores/química , Simportadores/genética , Simportadores/metabolismo
14.
Commun Chem ; 3: 77, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34113722

RESUMEN

Droplet interface bilayers (DIBs) are model membranes formed between lipid monolayer-encased water droplets in oil. Compared to conventional methods, one of the most unique properties of DIBs is that they can be connected together to generate multi-layered 'tissue-like' networks, however introducing communication pathways between these compartments typically relies on water-soluble pores that are unable to gate. Here, we show that network connectivity can instead be achieved using a water-insoluble membrane protein by successfully reconstituting a chemically activatable mutant of the mechanosensitive channel MscL into a network of DIBs. Moreover, we also show how the small molecule activator can diffuse through an open channel and across the neighbouring droplet to activate MscL present in an adjacent bilayer. This demonstration of membrane protein mediated bilayer communication could prove key toward developing the next generation of responsive bilayer networks capable of defining information flow inside a minimal tissue.

15.
Biochim Biophys Acta Biomembr ; 1862(1): 183019, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31302079

RESUMEN

Membrane protein folding studies lag behind those of water-soluble proteins due to immense difficulties of experimental study, resulting from the need to provide a hydrophobic lipid-bilayer environment when investigated in vitro. A sound understanding of folding mechanisms is important for membrane proteins as they contribute to a third of the proteome and are frequently associated with disease when mutated and/or misfolded. Membrane proteins largely consist of α-helical, hydrophobic transmembrane domains, which insert into the membrane, often using the SecYEG/Sec61 translocase system. This mini-review highlights recent advances in techniques that can further our understanding of co-translational folding and notably, the structure and insertion of nascent chains as they emerge from translating ribosomes. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.


Asunto(s)
Proteínas de la Membrana/química , Pliegue de Proteína , Sistemas de Translocación de Proteínas/fisiología , Animales , Humanos , Ribosomas/fisiología , Canales de Translocación SEC/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(34): 16711-16716, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371493

RESUMEN

To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.


Asunto(s)
Células Artificiales , Compartimento Celular , Mecanotransducción Celular , Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Compartimento Celular/efectos de los fármacos , Quelantes/farmacología , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Fosfolipasas A2/metabolismo
18.
Exp Biol Med (Maywood) ; 244(8): 709-720, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31053046

RESUMEN

IMPACT STATEMENT: The paper presents a comprehensive review of integral membrane protein studies utilizing droplet interface bilayers. Droplet interface bilayers are a novel method of constructing artificial lipid bilayers with enhanced stability and physicochemical complexity compared to existing methods. Their unique morphology also suggests applications in the construction of synthetic biological systems and protocells. As well as serving as a guide to in vitro membrane protein functional studies using droplet interface bilayers in the literature to date, a novel in vitro study of a flippase protein in a droplet interface bilayer is presented.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Sistema Libre de Células , Detergentes/farmacología , Proteínas Hemolisinas/química , Técnicas In Vitro , Liposomas , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/aislamiento & purificación , Micelas , Micromanipulación , Canales de Potasio/química , Biosíntesis de Proteínas , Transcripción Genética
19.
Chem Commun (Camb) ; 54(97): 13702-13705, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30452022

RESUMEN

Other than more widely used methods, the use of styrene maleic acid allows the direct extraction of membrane proteins from the lipid bilayer into SMALPs keeping it in its native lipid surrounding. Here we present the combined use of SMALPs and LILBID-MS, allowing determination of oligomeric states of membrane proteins of different functionality directly from the native nanodiscs.


Asunto(s)
Lípidos/química , Maleatos/química , Proteínas de la Membrana/análisis , Estireno/química , Membrana Dobles de Lípidos/química , Espectrometría de Masas , Modelos Moleculares , Tamaño de la Partícula
20.
Nat Commun ; 9(1): 4151, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297844

RESUMEN

Secondary transporters undergo structural rearrangements to catalyze substrate translocation across the cell membrane - yet how such conformational changes happen within a lipid environment remains poorly understood. Here, we combine hydrogen-deuterium exchange mass spectrometry (HDX-MS) with molecular dynamics (MD) simulations to understand how lipids regulate the conformational dynamics of secondary transporters at the molecular level. Using the homologous transporters XylE, LacY and GlpT from Escherichia coli as model systems, we discover that conserved networks of charged residues act as molecular switches that drive the conformational transition between different states. We reveal that these molecular switches are regulated by interactions with surrounding phospholipids and show that phosphatidylethanolamine interferes with the formation of the conserved networks and favors an inward-facing state. Overall, this work provides insights into the importance of lipids in shaping the conformational landscape of an important class of transporters.


Asunto(s)
Proteínas de Escherichia coli/química , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Conformación Proteica , Membrana Celular/metabolismo , Medición de Intercambio de Deuterio , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Simulación de Dinámica Molecular , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Unión Proteica , Simportadores/química , Simportadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA