Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6183-6200, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38613389

RESUMEN

The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.


Asunto(s)
Proteínas de Unión al Calcio , Diferenciación Celular , Impresión Genómica , ARN Largo no Codificante , Animales , Ratones , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares , Proteínas Gestacionales , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
2.
Development ; 150(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37997921

RESUMEN

The last edition of the X-chromosome inactivation (XCI) meeting was held as an EMBO workshop in Berlin on 19-22 June 2023. The conference took place at the Harnack-haus in the Dahlem district, birthplace of the first modern research campus, where notable scientists such as Lise Meitner, Hans Krebs and, briefly, Albert Einstein conducted their research. This special edition, also accessible online, was organized by Rafael Galupa (Centre for Integrative Biology of Toulouse, France), Joost Gribnau (Erasmus MC Rotterdam, The Netherlands), Claire Rougeulle (Université Paris Cité/CNRS, Epigenetics and Cell Fate Center, Paris, France), Edda Schulz (Max Planck Institute for Molecular Genetics, Berlin, Germany) and James Turner (The Francis Crick Institute, London, UK). Originally scheduled for 2021, to commemorate the 60th anniversary of Mary Lyon's hypothesis on X-chromosome inactivation in mammals and the 30th anniversary of XIST/Xist discovery, the meeting had to be postponed because of the COVID-19 pandemic. Seven years after the latest XCI meeting in London, the enthusiasm and expectations of the community were at their highest, bringing together over 160 scientists from around the world to share and discuss their research. Eighty posters and more than 40 talks were presented at this event, in a collegial and collaborative atmosphere. A historical session and several breakout discussions were also organized, as well as the now traditional boat trip, all thanks to great organization. Here, we debrief readers on this fantastic conference.


Asunto(s)
Pandemias , ARN Largo no Codificante , Animales , Humanos , Inactivación del Cromosoma X/genética , Epigénesis Genética , Mamíferos/genética , Cromosomas , ARN Largo no Codificante/genética , Cromosoma X
3.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502750

RESUMEN

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , Comunicación , Expresión Génica , Genoma , Ratones , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética
4.
Elife ; 112022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35049495

RESUMEN

Genomic imprinting refers to the mono-allelic and parent-specific expression of a subset of genes. While long recognized for their role in embryonic development, imprinted genes have recently emerged as important modulators of postnatal physiology, notably through hypothalamus-driven functions. Here, using mouse models of loss, gain and parental inversion of expression, we report that the paternally expressed Zdbf2 gene controls neonatal growth in mice, in a dose-sensitive but parent-of-origin-independent manner. We further found that Zdbf2-KO neonates failed to fully activate hypothalamic circuits that stimulate appetite, and suffered milk deprivation and diminished circulating Insulin Growth Factor 1 (IGF-1). Consequently, only half of Zdbf2-KO pups survived the first days after birth and those surviving were smaller. This study demonstrates that precise imprinted gene dosage is essential for vital physiological functions at the transition from intra- to extra-uterine life, here the adaptation to oral feeding and optimized body weight gain.


Asunto(s)
Proteínas de Unión al ADN/genética , Ingestión de Alimentos/genética , Impresión Genómica/genética , Hipotálamo , Aumento de Peso/genética , Animales , Animales Recién Nacidos/genética , Animales Recién Nacidos/fisiología , Femenino , Hipotálamo/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Ratones Noqueados , Embarazo
5.
Methods Mol Biol ; 2214: 157-173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32944909

RESUMEN

Immunofluorescence and RNA fluorescence in situ hybridization (FISH) methods enable the detection of, respectively, proteins and RNA molecules in single cells. Adapted to preimplantation mouse embryos, these techniques allow the investigation of transcriptional dynamics in the first embryonic and extraembryonic lineages and can circumvent the limited amount of starting material. This can as well be coupled to examination of chromatin modification, i.e., histone marks, by immunofluorescence. Here is outlined an immunofluorescence protocol combined to nascent RNA-FISH after immunosurgery of the mouse inner cell mass of the blastocyst to study early changes in transcription and/or histone marks of both primitive endoderm and epiblast cells. The method describes the different steps from coverslips and FISH probe preparation to inner cell mass isolation and immunofluorescence followed by RNA-FISH. Furthermore, this is applicable to earlier developmental stages and other mammalian species provided little technical adjustments.


Asunto(s)
Blastocisto/citología , Técnica del Anticuerpo Fluorescente/métodos , Hibridación Fluorescente in Situ/métodos , Ratones/embriología , ARN/análisis , Animales , Blastocisto/metabolismo , Endodermo/citología , Endodermo/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Ratones/genética , ARN/genética , Transcripción Genética
6.
Methods Mol Biol ; 2214: 283-293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32944917

RESUMEN

Over the past two decades, the development of chromosome conformation capture technologies has allowed to intensively probe the properties of genome folding in various cell types. High-throughput versions of these C-based assays (named Hi-C) have released the mapping of 3D chromosome folding for the entire genomes. Applied to mammalian preimplantation embryos, it has revealed a unique chromosome organization after fertilization when a new individual is being formed. However, the questions of whether specific structures could arise depending on their parental origins or of their transcriptional status remain open. Our method chapter is dedicated to the technical description on how applying scHi-C to mouse embryos at different stages of preimplantation development. This approach capitalized with the limited amount of material available at these developmental stages. It also provides new research avenues, such as the study of mutant embryos for further functional studies.


Asunto(s)
Blastocisto/citología , Cromosomas/genética , Ratones/embriología , Análisis de la Célula Individual/métodos , Animales , Blastocisto/metabolismo , Cromosomas/química , Desarrollo Embrionario , Ratones/genética , Micromanipulación/métodos , Fijación del Tejido/métodos
7.
Nature ; 580(7801): 142-146, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238933

RESUMEN

Paternal and maternal epigenomes undergo marked changes after fertilization1. Recent epigenomic studies have revealed the unusual chromatin landscapes that are present in oocytes, sperm and early preimplantation embryos, including atypical patterns of histone modifications2-4 and differences in chromosome organization and accessibility, both in gametes5-8 and after fertilization5,8-10. However, these studies have led to very different conclusions: the global absence of local topological-associated domains (TADs) in gametes and their appearance in the embryo8,9 versus the pre-existence of TADs and loops in the zygote5,11. The questions of whether parental structures can be inherited in the newly formed embryo and how these structures might relate to allele-specific gene regulation remain open. Here we map genomic interactions for each parental genome (including the X chromosome), using an optimized single-cell high-throughput chromosome conformation capture (HiC) protocol12,13, during preimplantation in the mouse. We integrate chromosome organization with allelic expression states and chromatin marks, and reveal that higher-order chromatin structure after fertilization coincides with an allele-specific enrichment of methylation of histone H3 at lysine 27. These early parental-specific domains correlate with gene repression and participate in parentally biased gene expression-including in recently described, transiently imprinted loci14. We also find TADs that arise in a non-parental-specific manner during a second wave of genome assembly. These de novo domains are associated with active chromatin. Finally, we obtain insights into the relationship between TADs and gene expression by investigating structural changes to the paternal X chromosome before and during X chromosome inactivation in preimplantation female embryos15. We find that TADs are lost as genes become silenced on the paternal X chromosome but linger in regions that escape X chromosome inactivation. These findings demonstrate the complex dynamics of three-dimensional genome organization and gene expression during early development.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Cromatina/metabolismo , Desarrollo Embrionario/genética , Fertilización/genética , Células Germinativas/citología , Padres , Alelos , Animales , Cromatina/química , Cromatina/genética , Posicionamiento de Cromosoma , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Impresión Genómica , Células Germinativas/metabolismo , Histonas/química , Histonas/metabolismo , Masculino , Metilación , Ratones , Proteínas del Grupo Polycomb/metabolismo , Análisis de la Célula Individual , Inactivación del Cromosoma X/genética
8.
Methods Mol Biol ; 1818: 51-65, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29961255

RESUMEN

Single-cell RNA-sequencing (scRNAseq) enables the detection and quantification of mature RNAs in an individual cell. Assessing single cell transcriptomes can circumvent the limited amount of starting material obtained in oocytes or embryos, in particular when working with mutant mice. Here we outline our scRNAseq protocol to study mouse oocyte transcriptomes, derived from Tang et al., Nat Methods 6(5):377-382, 2009 . The method describes the different steps from single cell isolation and cDNA amplification to high-throughput sequencing. The bioinformatics pipeline used to analyze and compare genome-wide gene expression between individual oocytes is then described.


Asunto(s)
Biología Computacional/métodos , Oocitos/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunoprecipitación , Ratones , Oocitos/citología
9.
Elife ; 72018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29745895

RESUMEN

Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.


Asunto(s)
Blastocisto/fisiología , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Oocitos/fisiología , Animales , Redes Reguladoras de Genes , Ratones
10.
Nat Commun ; 8(1): 1297, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101321

RESUMEN

X-chromosome inactivation is established during early development. In mice, transcriptional repression of the paternal X-chromosome (Xp) and enrichment in epigenetic marks such as H3K27me3 is achieved by the early blastocyst stage. X-chromosome inactivation is then reversed in the inner cell mass. The mechanisms underlying Xp reactivation remain enigmatic. Using in vivo single-cell approaches (allele-specific RNAseq, nascent RNA-fluorescent in situ hybridization and immunofluorescence), we show here that different genes are reactivated at different stages, with more slowly reactivated genes tending to be enriched in H3meK27. We further show that in UTX H3K27 histone demethylase mutant embryos, these genes are even more slowly reactivated, suggesting that these genes carry an epigenetic memory that may be actively lost. On the other hand, expression of rapidly reactivated genes may be driven by transcription factors. Thus, some X-linked genes have minimal epigenetic memory in the inner cell mass, whereas others may require active erasure of chromatin marks.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Epigénesis Genética , Factores de Transcripción/farmacocinética , Inactivación del Cromosoma X/genética , Animales , Femenino , Genes Ligados a X , Histonas/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Modelos Genéticos , Embarazo , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual
11.
Nat Struct Mol Biol ; 24(3): 226-233, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28134930

RESUMEN

The long noncoding RNA Xist is expressed from only the paternal X chromosome in mouse preimplantation female embryos and mediates transcriptional silencing of that chromosome. In females, absence of Xist leads to postimplantation lethality. Here, through single-cell RNA sequencing of early preimplantation mouse embryos, we found that the initiation of imprinted X-chromosome inactivation absolutely requires Xist. Lack of paternal Xist leads to genome-wide transcriptional misregulation in the early blastocyst and to failure to activate the extraembryonic pathway that is essential for postimplantation development. We also demonstrate that the expression dynamics of X-linked genes depends on the strain and parent of origin as well as on the location along the X chromosome, particularly at the first 'entry' sites of Xist. This study demonstrates that dosage-compensation failure has an effect as early as the blastocyst stage and reveals genetic and epigenetic contributions to orchestrating transcriptional silencing of the X chromosome during early embryogenesis.


Asunto(s)
Desarrollo Embrionario/genética , Impresión Genómica , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Alelos , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular/genética , Compensación de Dosificación (Genética) , Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Silenciador del Gen , Genes Ligados a X , Cinética , Masculino , Ratones Endogámicos C57BL , Mutación/genética , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Tiempo , Cromosoma X/genética
12.
Elife ; 52016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26836306

RESUMEN

Upon fertilization, the highly specialised sperm and oocyte genomes are remodelled to confer totipotency. The mechanisms of the dramatic reprogramming events that occur have remained unknown, and presumed roles of histone modifying enzymes are just starting to be elucidated. Here, we explore the function of the oocyte-inherited pool of a histone H3K4 and K9 demethylase, LSD1/KDM1A during early mouse development. KDM1A deficiency results in developmental arrest by the two-cell stage, accompanied by dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns. At the transcriptional level, the switch of the maternal-to-zygotic transition fails to be induced properly and LINE-1 retrotransposons are not properly silenced. We propose that KDM1A plays critical roles in establishing the correct epigenetic landscape of the zygote upon fertilization, in preserving genome integrity and in initiating new patterns of genome expression that drive early mouse development.


Asunto(s)
Cromatina/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas/metabolismo , Transcripción Genética , Cigoto/enzimología , Cigoto/fisiología , Animales , Epigénesis Genética , Ratones , Oocitos/enzimología , Oocitos/fisiología
13.
Cell Stem Cell ; 14(2): 203-16, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24506884

RESUMEN

During early development of female mouse embryos, both X chromosomes are transiently active. X gene dosage is then equalized between the sexes through the process of X chromosome inactivation (XCI). Whether the double dose of X-linked genes in females compared with males leads to sex-specific developmental differences has remained unclear. Using embryonic stem cells with distinct sex chromosome compositions as a model system, we show that two X chromosomes stabilize the naive pluripotent state by inhibiting MAPK and Gsk3 signaling and stimulating the Akt pathway. Since MAPK signaling is required to exit the pluripotent state, differentiation is paused in female cells as long as both X chromosomes are active. By preventing XCI or triggering it precociously, we demonstrate that this differentiation block is released once XX cells have undergone X inactivation. We propose that double X dosage interferes with differentiation, thus ensuring a tight coupling between X chromosome dosage compensation and development.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Cromosoma X/genética , Animales , Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , ADN Metiltransferasa 3A , Compensación de Dosificación (Genética) , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Células Madre Pluripotentes/citología , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Inactivación del Cromosoma X/genética , ADN Metiltransferasa 3B
14.
Development ; 140(6): 1231-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23406902

RESUMEN

The myogenic regulatory factor Myod and insulin-like growth factor 2 (Igf2) have been shown to interact in vitro during myogenic differentiation. In order to understand how they interact in vivo, we produced double-mutant mice lacking both the Myod and Igf2 genes. Surprisingly, these mice display neonatal lethality due to severe diaphragm atrophy. Alteration of diaphragm muscle development occurs as early as 15.5 days post-coitum in the double-mutant embryos and leads to a defect in the terminal differentiation of muscle progenitor cells. A negative-feedback loop was detected between Myod and Igf2 in embryonic muscles. Igf2 belongs to the imprinted H19-Igf2 locus. Molecular analyses show binding of Myod on a mesodermal enhancer (CS9) of the H19 gene. Chromatin conformation capture experiments reveal direct interaction of CS9 with the H19 promoter, leading to increased H19 expression in the presence of Myod. In turn, the non-coding H19 RNA represses Igf2 expression in trans. In addition, Igf2 also negatively regulates Myod expression, possibly by reducing the expression of the Srf transcription factor, a known Myod activator. In conclusion, Igf2 and Myod are tightly co-regulated in skeletal muscles and act in parallel pathways in the diaphragm, where they affect the progression of myogenic differentiation. Igf2 is therefore an essential player in the formation of a functional diaphragm in the absence of Myod.


Asunto(s)
Diafragma/embriología , Epistasis Genética/fisiología , Factor II del Crecimiento Similar a la Insulina/genética , Proteína MioD/genética , ARN Largo no Codificante/genética , Animales , Animales Recién Nacidos , Diafragma/crecimiento & desarrollo , Diafragma/metabolismo , Embrión de Mamíferos , Femenino , Sitios Genéticos , Factor II del Crecimiento Similar a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Desarrollo de Músculos/genética , Proteína MioD/fisiología , Organogénesis/genética , Embarazo , ARN Largo no Codificante/fisiología
15.
FASEB J ; 26(11): 4584-91, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22859371

RESUMEN

Brown fat or brown adipose tissue (BAT), found in newborn mammals as small depots localized in the interscapular region, plays a prominent role in regulating thermogenesis perinatally. The physiological importance of functional BAT has been recently reasserted in human adults. Because myoblasts and adipoblasts emerge from a common mesodermal precursor, we investigated developmental determination and the reciprocal relationship between muscle and adipocyte commitment. Here we show that a mutant mouse defective for both Igf2 and Myod genes exhibits massive BAT hypertrophy compared with wild-type and single-mutant newborns. The increased adipocyte proliferation in BAT of double-mutant newborns was associated with overexpression of the brown fat-specific marker Ucp1. More strikingly, expression of the master key gene Prdm16 involved in the switch between myogenic and brown adipogenic lineages was drastically enhanced. We further demonstrate that concomitant Myod and Igf2 inactivation accelerates differentiation of a brown preadipocyte cell line and induces lipid accumulation and increased Ucp1 and Prdm16 expression. This in vitro approach brings additional support for the implication of both Myod and Igf2 in BAT development. These results provide the first in vivo evidence that a myogenic regulator together with a growth factor act simultaneously but through independent pathways to repress Prdm16, which opens potential therapeutic perspectives for human metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Proteína MioD/metabolismo , Factores de Transcripción/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/fisiología , Animales , Proteínas de Unión al ADN/genética , Embrión de Mamíferos , Heterocigoto , Homocigoto , Factor II del Crecimiento Similar a la Insulina/genética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteína MioD/genética , ARN Interferente Pequeño , Factores de Transcripción/genética , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...