Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circulation ; 136(3): 297-313, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28432149

RESUMEN

BACKGROUND: T cells are required for proper healing after myocardial infarction. The mechanism of their beneficial action, however, is unknown. The proinflammatory danger signal ATP, released from damaged cells, is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine. Here, we investigate the contribution of CD73-derived adenosine produced by T cells to cardiac remodeling after ischemia/reperfusion and define its mechanism of action. METHODS: Myocardial ischemia (50 minutes followed by reperfusion) was induced in global CD73-/- and CD4-CD73-/- mice. Tissue injury, T-cell purinergic signaling, cytokines, and cardiac function (magnetic resonance tomography at 9.4 T over 4 weeks) were analyzed. RESULTS: Changes in functional parameters of CD4-CD73-/- mice were identical to those in global CD73 knockouts (KOs). T cells infiltrating the injured heart significantly upregulated at the gene (quantitative polymerase chain reaction) and protein (enzymatic activity) levels critical transporters and enzymes (connexin43, connexin37, pannexin-1, equilibrative nucleoside transporter 1, CD39, CD73, ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3, CD157, CD38) for the accelerated release and hydrolysis of ATP, cAMP, AMP, and NAD to adenosine. It is surprising that a lack of CD39 on T cells (from CD39-/- mice) did not alter ATP hydrolysis and very likely involves pyrophosphatases (ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3). Circulating T cells predominantly expressed A2a receptor (A2aR) transcripts. After myocardial infarction, A2b receptor (A2bR) transcription was induced in both T cells and myeloid cells in the heart. Thus, A2aR and A2bR signaling may contribute to myocardial responses after myocardial infarction. In the case of T cells, this was associated with an accelerated secretion of proinflammatory and profibrotic cytokines (interleukin-2, interferon-γ, and interleukin-17) when CD73 was lacking. Cytokine production by T cells from peripheral lymph nodes was inhibited by A2aR activation (CGS-21680). The A2bR agonist BAY 60-6583 showed off-target effects. The adenosine receptor agonist NECA inhibited interferon-γ and stimulated interleukin-6 production, each of which was antagonized by a specific A2bR antagonist (PSB-603). CONCLUSIONS: This work demonstrates that CD73 on T cells plays a crucial role in the cardiac wound healing process after myocardial infarction. The underlying mechanism involves a profound increase in the hydrolysis of ATP/NAD and AMP, resulting primarily from the upregulation of pyrophosphatases and CD73. We also define A2bR/A2aR-mediated autacoid feedback inhibition of proinflammatory/profibrotic cytokines by T cell-derived CD73.


Asunto(s)
5'-Nucleotidasa/metabolismo , Infarto del Miocardio/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B/metabolismo , Linfocitos T/metabolismo , Cicatrización de Heridas/fisiología , 5'-Nucleotidasa/inmunología , Animales , Movimiento Celular/fisiología , Reprogramación Celular/fisiología , Femenino , Ratones , Ratones Noqueados , Ratones Transgénicos , Infarto del Miocardio/inmunología , Receptor de Adenosina A2A/inmunología , Receptor de Adenosina A2B/inmunología , Linfocitos T/inmunología
2.
Circ Heart Fail ; 10(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28404626

RESUMEN

BACKGROUND: Structural damage during heart failure development leads to increased infiltration of leukocytes. Because purinergic signaling on immune cells may impact on the inflammatory response, we evaluated the role of ecto-5'-nucleotidase (CD73) on the development of heart failure after transverse aortic constriction (TAC) using global and T-cell-specific CD73-/- mice. METHODS AND RESULTS: Leukocytes infiltrating the failing heart were analyzed by a multistep enzymatic procedure over a period of 16 weeks using fluorescence-activated cell sorting. TAC significantly enhanced the infiltration of leukocytes, especially T cells. The fraction of CD73 expressing cells increased over time exclusively on cytotoxic T cells, T-helper cells, and regulatory T cells. Cardiac function significantly declined in T-cell-specific CD4-Cre+/-CD73flox/flox mice identical to that observed in global CD73 mutants and was associated with enhanced fibrosis (collagen, laminin, vimentin, periostin). Expression analysis by quantitative reverse transcription polymerase chain reaction of extracellular purine degrading enzymes and P1 and P2 receptors on T cells isolated from the injured heart revealed profound upregulation of the enzymatic machinery for hydrolysis of extracellular adenosine triphosphate and nicotinamide adenine dinucleotide, both pathways converging in the formation of AMP and adenosine via CD73. Among the P1 receptors, only the A2a receptor was significantly upregulated after TAC. T cells isolated from TAC-treated hearts show enhanced production of proinflammatory cytokines (interleukin-3, interleukin-6, interleukin-13, interleukin-17, macrophage inflammatory proteins-1α, and macrophage inflammatory proteins-1ß) when CD73 was lacking. CONCLUSIONS: Our data provide first evidence that CD73 on T cells plays an important anti-inflammatory role in TAC-induced heart failure, which is associated with antifibrotic activity and reduced production of proinflammatory cytokines most likely by activation of the adenosine A2a receptor.


Asunto(s)
5'-Nucleotidasa/metabolismo , Insuficiencia Cardíaca/inmunología , Inflamación/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , 5'-Nucleotidasa/deficiencia , 5'-Nucleotidasa/inmunología , Adenosina/inmunología , Adenosina Trifosfato/metabolismo , Animales , Aorta/enzimología , Colágeno/inmunología , Constricción , Modelos Animales de Enfermedad , Fibrosis/enzimología , Insuficiencia Cardíaca/genética , Interleucina-3/metabolismo , Masculino , Ratones , Ratones Noqueados
3.
Basic Res Cardiol ; 109(5): 430, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25098936

RESUMEN

Healing of the myocardium after infarction comprises a variety of local adaptive processes which contribute to the functional outcome after the insult. Therefore, we aimed to establish a setting for concomitant assessment of regional alterations in contractile function, morphology, and immunological state to gain prognostic information on cardiac recovery after infarction. For this, mice were subjected to myocardial ischemia/reperfusion (I/R) and monitored for 28 days by cine MRI, T2 mapping, late gadolinium enhancement (LGE), and (19)F MRI. T2 values were calculated from gated multi-echo sequences. (19)F-loaded nanoparticles were injected intravenously for labelling circulating monocytes and making them detectable by (19)F MRI. In-house developed software was used for regional analysis of cine loops, T2 maps, LGE, and (19)F images to correlate local wall movement, tissue damage as well as monocyte recruitment over up to 200 sectors covering the left ventricle. This enabled us to evaluate simultaneously zonal cardiac necrosis, oedema, and inflammation patterns together with sectional fractional shortening (FS) and global myocardial function. Oedema, indicated by a rise in T2, showed a slightly better correlation with FS than LGE. Regional T2 values increased from 19 ms to above 30 ms after I/R. In the course of the healing process oedema resolved within 28 days, while myocardial function recovered. Infiltrating monocytes could be quantitatively tracked by (19)F MRI, as validated by flow cytometry. Furthermore, (19)F MRI proved to yield valuable insight on the outcome of myocardial infarction in a transgenic mouse model. In conclusion, our approach permits a comprehensive surveillance of key processes involved in myocardial healing providing independent and complementary information for individual prognosis.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/patología , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Cardiovasc Res ; 103(2): 206-16, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24920296

RESUMEN

AIMS: Programmed necrosis (necroptosis) represents a newly identified mechanism of cell death combining features of both apoptosis and necrosis. Like apoptosis, necroptosis is tightly regulated by distinct signalling pathways. A key regulatory role in programmed necrosis has been attributed to interactions of the receptor-interacting protein kinases, RIP1 and RIP3. However, the specific functional role of RIP3-dependent signalling and necroptosis in the heart is unknown. The aims of this study were thus to assess the significance of necroptosis and RIP3 in the context of myocardial ischaemia. METHODS AND RESULTS: Immunoblots revealed strong expression of RIP3 in murine hearts, indicating potential functional significance of this protein in the myocardium. Consistent with a role in promoting necroptosis, adenoviral overexpression of RIP3 in neonatal rat cardiomyocytes and stimulation with TNF-α induced the formation of a complex of RIP1 and RIP3. Moreover, RIP3 overexpression was sufficient to induce necroptosis of cardiomyocytes. In vivo, cardiac expression of RIP3 was up-regulated upon myocardial infarction (MI). Conversely, mice deficient for RIP3 (RIP3(-/-)) showed a significantly better ejection fraction (45 ± 3.6 vs. 32 ± 4.4%, P < 0.05) and less hypertrophy in magnetic resonance imaging studies 30 days after experimental infarction due to left anterior descending coronary artery ligation. This was accompanied by a diminished inflammatory response of infarcted hearts and decreased generation of reactive oxygen species. CONCLUSION: Here, we show that RIP3-dependent necroptosis modulates post-ischaemic adverse remodelling in a mouse model of MI. This novel signalling pathway may thus be an attractive target for future therapies that aim to limit the adverse consequences of myocardial ischaemia.


Asunto(s)
Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Muerte Celular/fisiología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/patología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
5.
PLoS One ; 9(4): e95382, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24748324

RESUMEN

Extracellular nucleotides and nucleosides have been implicated as important signaling molecules in the pathogenesis of acute lung injury (ALI). While adenosine is known to inhibit T cell activation, little information is available as to ATP and NAD degrading enzymes, the expression of ATP and adenosine receptors/transporters in different T cell subsets. ALI was induced by challenging mice with intra-tracheal instillation of 60 µl (3 µg/g) LPS. After 3 d and 7 d blood, lung tissue and bronchoalveolar lavage was collected and immune cells were analyzed using flow cytometry. The transcriptional phenotype of T helper cells, cytotoxic and regulatory T cells sorted by FACS was assessed by measuring the expression profile of 28 genes related to purinergic signaling using TaqMan Array Micro Fluidic Cards. Catabolism of ATP, NAD and cAMP by activated CD4+ T cells was evaluated by HPLC. CD73 was found to be highly abundant on lymphoid cells with little abundance on myeloid cells, while the opposite was true for CD39. After ALI, the abundance of CD39 and CD73 significantly increased on all T cell subsets derived from lung tissue and bronchoalveolar space. Expression analysis in T cell subsets of the lung revealed ATP (Cd39, Cd73) and NAD (Cd38, Cd157, Cd296, Pc-1) degrading enzymes. However, only transcription of Cd38, Cd39, Cd73, Ent1 and A2a receptor was significantly upregulated after ALI in T helper cells. CD4+ T cells from injured lung rapidly metabolized extracellular ATP to AMP and adenosine but not NAD or cAMP. These findings show that lung T cells--the dominant cell fraction in the later phase of ALI--exhibit a unique expression pattern of purinergic signaling molecules. Adenosine is formed by T cells at an enhanced rate from ATP but not from NAD and together with upregulated A2a receptor is likely to modulate the healing process after acute lung injury.


Asunto(s)
Leucocitos/patología , Lipopolisacáridos/toxicidad , Lesión Pulmonar/patología , Receptores Purinérgicos/metabolismo , Transducción de Señal , 5'-Nucleotidasa/inmunología , Animales , Antígenos CD/inmunología , Apirasa/inmunología , Cromatografía Líquida de Alta Presión , Leucocitos/inmunología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
J Leukoc Biol ; 95(4): 689-97, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24319285

RESUMEN

Inflammation results in the recruitment of neutrophils and monocytes, which is crucial for the healing process. In the present study, we used (19)F MRI to monitor in vivo the infiltration of neutrophils and monocytes from the onset of inflammation to the resolution and healing phase. Matrigel, with or without LPS, was s.c.-implanted into C57BL/6 mice. This resulted in a focal inflammation lasting over a period of 20 days, with constantly decreasing LPS levels in doped matrigel plugs. After i.v. administration of (19)F containing contrast agent, (19)F MRI revealed a zonular (19)F signal in the periphery of LPS containing matrigel plugs, which was not observed in control plugs. Analysis of the (19)F signal over the observation period demonstrated the strongest (19)F signal after 24 h, which decreased to nearly zero after 20 days. The (19)F signal was mirrored by the amount of leukocytes in the matrigel, with neutrophils dominating at early time-points and macrophages at later time-points. Both populations were shown to take up the (19)F contrast agent. In conclusion, (19)F MRI, in combination with the matrigel/LPS model, permits the noninvasive analysis of neutrophil and monocyte infiltration over the complete course of inflammation in vivo.


Asunto(s)
Movimiento Celular , Medios de Contraste , Inflamación/inmunología , Imagen por Resonancia Magnética/métodos , Monocitos/fisiología , Neutrófilos/fisiología , Animales , Flúor , Fluorocarburos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Neutrófilos/citología
7.
MAGMA ; 27(1): 101-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23824166

RESUMEN

OBJECTIVE: This paper introduces a new approach permitting for the first time a specific, non-invasive diagnosis of myocarditis by visualizing the infiltration of immune cells into the myocardium. MATERIALS AND METHODS: The feasibility of this approach is shown in a murine model of viral myocarditis. Our study uses biochemically inert perfluorocarbons (PFCs) known to be taken up by circulating monocytes/macrophages after intravenous injection. RESULTS: In vivo (19)F MRI at 9.4 T demonstrated that PFC-loaded immune cells infiltrate into inflamed myocardial areas. Because of the lack of any fluorine background in the body, detected (19)F signals of PFCs are highly specific as confirmed ex vivo by flow cytometry and histology. CONCLUSION: Since PFCs are a family of compounds previously used clinically as blood substitutes, the technique described in our paper holds the potential as a new imaging modality for the diagnosis of myocarditis in man.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Miocarditis/virología , Animales , Citometría de Flujo/métodos , Flúor/química , Fluorocarburos/química , Inyecciones Intravenosas , Macrófagos/citología , Masculino , Ratones , Monocitos/citología , Miocardio/inmunología , Miocardio/patología
8.
Circ Res ; 113(3): 301-12, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23720442

RESUMEN

RATIONALE: Ecto-5'-nucleotidase (CD73) on immune cells is emerging as a critical pathway and therapeutic target in cardiovascular and autoimmune disorders. OBJECTIVE: Here, we investigated the role of CD73 in postinfarction inflammation, cardiac repair, and remodeling in mice after reperfused myocardial infarction (50-minute ischemia). METHODS AND RESULTS: We found that compared with control mice (1) cardiac function in CD73(-/-) mice more severely declined after infarction (systolic failure with enhanced myocardial edema formation) as determined by MRI and was associated with the persistence of cardiac immune cell subsets, (2) cardiac adenosine release was augmented 7 days after ischemia/reperfusion in control mice but reduced by 90% in CD73 mutants, (3) impaired healing involves M1-driven immune response with increased tumor necrosis factor-α and interleukin-17, as well as decreased transforming growth factor-ß and interleukin-10, and (4) CD73(-/-) mice displayed infarct expansion accompanied by an immature replacement scar and diffuse ventricular fibrosis. Studies on mice after bone marrow transplantation revealed that CD73 present on immune cells is a major determinant promoting cardiac healing. CONCLUSIONS: These results, together with the upregulation of CD73 on immune cells after ischemia/reperfusion, demonstrate the crucial role of purinergic signaling during cardiac healing and provide groundwork for novel anti-inflammatory strategies in treating adverse cardiac remodeling.


Asunto(s)
5'-Nucleotidasa/biosíntesis , Inmunidad Celular/fisiología , Remodelación Ventricular/fisiología , 5'-Nucleotidasa/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología
9.
Sci Transl Med ; 4(146): 146ra108, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22875828

RESUMEN

Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation.


Asunto(s)
5'-Nucleotidasa/metabolismo , Agonistas del Receptor de Adenosina A2/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Articulaciones/efectos de los fármacos , Profármacos/uso terapéutico , Receptor de Adenosina A2A/metabolismo , Animales , Artritis Reumatoide/inmunología , Inflamación/inmunología , Articulaciones/inmunología , Masculino , Ratones
10.
PLoS One ; 7(4): e34730, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22514659

RESUMEN

BACKGROUND: The ectoenzymes CD39 and CD73 are expressed by a broad range of immune cells and promote the extracellular degradation of nucleotides to anti-inflammatory adenosine. This study explored the abundance of CD73 and CD39 on circulating and resident cardiac leukocytes and coronary endothelial cells under control conditions and in response to inflammation following myocardial ischemia and reperfusion (I/R). METHODS AND RESULTS: A method was elaborated to permit FACS analysis of non-myocardial cells (resident leukocytes, coronary endothelium and CD31(-) CD45(-) cells) of the unstressed heart. Under control conditions the murine heart contained 2.3 × 10(3) resident leukocytes/mg tissue, the most prominent fraction being antigen-presenting mononuclear cells (CD11b(+) CD11c(+) F4/80(+) MHCII(+)) followed by B-cells, monocytes and T-cells. CD73 was highly expressed on circulating and resident cardiac lymphoid cells with little expression on myeloid cells, while the opposite was true for CD39. Cardiomyocytes and erythrocytes do not measurably express CD39/CD73 and CD39 dominates on coronary endothelium. Three days after I/R, CD73 was significantly upregulated on invading granulocytes (2.8-fold) and T-cells (1.5-fold). Compared with coronary endothelial cells, CD73 associated with leukocytes comprised 2/3 of the total cardiac CD73. CONCLUSION: Our study suggests that extracellular ATP formed during I/R is preferentially degraded by CD39 present on myeloid cells, while the formation of immunosuppressive adenosine is mainly catalysed by CD73 present on granulocytes and lymphoid cells. Upregulated CD73 on granulocytes and T-cells infiltrating the injured heart is consistent with the existence of an autocrine adenosinergic loop which may promote the healing process.


Asunto(s)
5'-Nucleotidasa/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Leucocitos/metabolismo , Infarto del Miocardio/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Linfocitos B/metabolismo , Células Cultivadas , Eritrocitos/metabolismo , Femenino , Citometría de Flujo , Granulocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...