RESUMEN
BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.
Asunto(s)
Broncoscopía , Impedancia Eléctrica , Animales , Porcinos , Broncoscopía/métodos , Neumonectomía/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Pulmón/cirugía , Pulmón/fisiología , Tomografía/métodos , Atelectasia Pulmonar/diagnóstico por imagen , Atelectasia Pulmonar/fisiopatología , Mediciones del Volumen Pulmonar/métodos , Factores de TiempoRESUMEN
BACKGROUND: The same principle behind pulse wave analysis can be applied on the pulmonary artery (PA) pressure waveform to estimate right ventricle stroke volume (RVSV). However, the PA pressure waveform might be influenced by the direct transmission of the intrathoracic pressure changes throughout the respiratory cycle caused by mechanical ventilation (MV), potentially impacting the reliability of PA pulse wave analysis (PAPWA). We assessed a new method that minimizes the direct effect of the MV on continuous PA pressure measurements and enhances the reliability of PAPWA in tracking beat-to-beat RVSV. METHODS: Continuous PA pressure and flow were simultaneously measured for 2-3 min in 5 pigs using a high-fidelity micro-tip catheter and a transonic flow sensor around the PA trunk, both pre and post an experimental ARDS model. RVSV was estimated by PAPWA indexes such as pulse pressure (SVPP), systolic area (SVSystAUC) and standard deviation (SVSD) beat-to-beat from both corrected and non-corrected PA signals. The reference RVSV was derived from the PA flow signal (SVref). RESULTS: The reliability of PAPWA in tracking RVSV on a beat-to-beat basis was enhanced after accounting for the direct impact of intrathoracic pressure changes induced by MV throughout the respiratory cycle. This was evidenced by an increase in the correlation between SVref and RVSV estimated by PAPWA under healthy conditions: rho between SVref and non-corrected SVSD - 0.111 (0.342), corrected SVSD 0.876 (0.130), non-corrected SVSystAUC 0.543 (0.141) and corrected SVSystAUC 0.923 (0.050). Following ARDS, correlations were SVref and non-corrected SVSD - 0.033 (0.262), corrected SVSD 0.839 (0.077), non-corrected SVSystAUC 0.483 (0.114) and corrected SVSystAUC 0.928 (0.026). Correction also led to reduced limits of agreement between SVref and SVSD and SVSystAUC in the two evaluated conditions. CONCLUSIONS: In our experimental model, we confirmed that correcting for mechanical ventilation induced changes during the respiratory cycle improves the performance of PAPWA for beat-to-beat estimation of RVSV compared to uncorrected measurements. This was demonstrated by a better correlation and agreement between the actual SV and the obtained from PAPWA.
RESUMEN
[This corrects the article DOI: 10.3389/fphys.2023.1113568.].
RESUMEN
Low-volume lung injury encompasses local concentration of stresses in the vicinity of collapsed regions in heterogeneously ventilated lungs. We aimed to study the effects on ventilation and perfusion distributions of a sequential lateral positioning (30°) strategy using electrical impedance tomography imaging in a porcine experimental model of early acute respiratory distress syndrome (ARDS). We hypothesized that such strategy, including a real-time individualization of positive end-expiratory pressure (PEEP) whenever in lateral positioning, would provide attenuation of collapse in the dependent lung regions. A two-hit injury acute respiratory distress syndrome experimental model was established by lung lavages followed by injurious mechanical ventilation. Then, all animals were studied in five body positions in a sequential order, 15 min each: Supine 1; Lateral Left; Supine 2; Lateral Right; Supine 3. The following functional images were analyzed by electrical impedance tomography: ventilation distributions and regional lung volumes, and perfusion distributions. The induction of the acute respiratory distress syndrome model resulted in a marked fall in oxygenation along with low regional ventilation and compliance of the dorsal half of the lung (gravitational-dependent in supine position). Both the regional ventilation and compliance of the dorsal half of the lung greatly increased along of the sequential lateral positioning strategy, and maximally at its end. In addition, a corresponding improvement of oxygenation occurred. In conclusion, our sequential lateral positioning strategy, with sufficient positive end-expiratory pressure to prevent collapse of the dependent lung units during lateral positioning, provided a relevant diminution of collapse in the dorsal lung in a porcine experimental model of early acute respiratory distress syndrome.
RESUMEN
Real-time effects of changing body position and positive end-expiratory pressure (PEEP) on regional lung overdistension and collapse in individual patients remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP in supine and prone body positions seeking to reduce lung collapse and overdistension in mechanically ventilated patients with coronavirus disease (COVID-19)-induced acute respiratory distress syndrome (ARDS). We hypothesized that prone positioning with bedside titrated PEEP would provide attenuation of both overdistension and collapse. In this prospective observational study, patients with COVID-19-induced ARDS under mechanical ventilation were included. We used electrical impedance tomography (EIT) with decremental PEEP titration algorithm (PEEPEIT-titration), which provides information on regional lung overdistension and collapse, along with global respiratory system compliance, to individualize PEEP and body position. PEEPEIT-titration in supine position followed by PEEPEIT-titration in prone position were performed. Immediately before each PEEPEIT-titration, the same lung recruitment maneuver was performed: 2 min of PEEP 24 cmH2O and driving pressure of 15 cmH2O. Forty-two PEEPEIT-titration were performed in ten patients (21 pairs supine and prone positions). We have found larger % of overdistension along the PEEP titration in prone than supine position (P = 0.042). A larger % of collapse along the PEEP titration was found in supine than prone position (P = 0.037). A smaller respiratory system compliance was found in prone than supine position (P < 0.0005). In patients with COVID-19-induced ARDS, prone body position, when compared with supine body position, decreased lung collapse at low PEEP levels, but increased lung overdistension at PEEP levels greater than 10 cm H2O.Trial registration number: NCT04460859.
Asunto(s)
COVID-19 , Respiración con Presión Positiva , Atelectasia Pulmonar , Síndrome de Dificultad Respiratoria , COVID-19/complicaciones , COVID-19/terapia , Humanos , Pulmón/patología , Posición Prona , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapiaRESUMEN
BACKGROUND: Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. Right-left lung aeration asymmetry and poorly recruitable lungs with increased recruitability with alternating body position between supine and prone have been reported. However, real-time effects of changing body position and PEEP on regional overdistension and collapse, in individual patients, remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP and body positioning in order to reduce the mechanisms of ventilator-induced lung injury: collapse and overdistension. METHODS: We here report a series of five consecutive mechanically ventilated patients with COVID-19-associated ARDS in which sixteen decremental PEEP titrations were performed in the first days of mechanical ventilation (8 titration pairs: supine position immediately followed by 30° targeted lateral position). The choice of lateral tilt was based on X-Ray. This targeted lateral position strategy was defined by selecting the less aerated lung to be positioned up and the more aerated lung to be positioned down. For each PEEP level, global and regional collapse and overdistension maps and percentages were measured by electrical impedance tomography. Additionally, we present the incidence of lateral asymmetry in a cohort of forty-four patients. RESULTS: The targeted lateral position strategy resulted in significantly smaller amounts of overdistension and collapse when compared with the supine one: less collapse along the PEEP titration was found within the left lung in targeted lateral (P = 0.014); and less overdistension along the PEEP titration was found within the right lung in targeted lateral (P = 0.005). Regarding collapse within the right lung and overdistension within the left lung: no differences were found for position. In the cohort of forty-four patients, ventilation inequality of > 65/35% was observed in 15% of cases. CONCLUSIONS: Targeted lateral positioning with bedside personalized PEEP provided a selective attenuation of overdistension and collapse in mechanically ventilated patients with COVID-19-associated ARDS and right-left lung aeration/ventilation asymmetry. TRIAL REGISTRATION: Trial registration number: NCT04460859.
Asunto(s)
COVID-19/terapia , Posicionamiento del Paciente/métodos , Atelectasia Pulmonar/prevención & control , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Adulto , Anciano , Anciano de 80 o más Años , Impedancia Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración con Presión Positiva/métodos , Estudios Prospectivos , Atelectasia Pulmonar/terapia , Respiración Artificial/métodos , SARS-CoV-2RESUMEN
BACKGROUND: Bedside measurement of lung volume may provide guidance in the personalised setting of respiratory support, especially in patients with the acute respiratory distress syndrome at risk of ventilator-induced lung injury. We propose here a novel operator-independent technique, enabled by a fibre optic oxygen sensor, to quantify the lung volume available for gas exchange. We hypothesised that the continuous measurement of arterial partial pressure of oxygen (PaO2) decline during a breath-holding manoeuvre could be used to estimate lung volume in a single-compartment physiological model of the respiratory system. METHODS: Thirteen pigs with a saline lavage lung injury model and six control pigs were studied under general anaesthesia during mechanical ventilation. Lung volumes were measured by simultaneous PaO2 rate of decline (VPaO2) and whole-lung computed tomography scan (VCT) during apnoea at different positive end-expiratory and end-inspiratory pressures. RESULTS: A total of 146 volume measurements was completed (range 134 to 1869 mL). A linear correlation between VCT and VPaO2 was found both in control (slope = 0.9, R2 = 0.88) and in saline-lavaged pigs (slope = 0.64, R2 = 0.70). The bias from Bland-Altman analysis for the agreement between the VCT and VPaO2 was - 84 mL (limits of agreement ± 301 mL) in control and + 2 mL (LoA ± 406 mL) in saline-lavaged pigs. The concordance for changes in lung volume, quantified with polar plot analysis, was - 4º (LoA ± 19°) in control and - 9° (LoA ± 33°) in saline-lavaged pigs. CONCLUSION: Bedside measurement of PaO2 rate of decline during apnoea is a potential approach for estimation of lung volume changes associated with different levels of airway pressure.
Asunto(s)
Velocidad del Flujo Sanguíneo , Terapia por Inhalación de Oxígeno/métodos , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/fisiopatología , Embolia Pulmonar/terapia , Tomografía/métodos , Relación Ventilacion-Perfusión , Adulto , Anciano , Anciano de 80 o más Años , Monitoreo Biológico/instrumentación , Monitoreo Biológico/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistemas de Atención de PuntoRESUMEN
BACKGROUND: Real-time bedside information on regional ventilation and perfusion during mechanical ventilation (MV) may help to elucidate the physiological and pathophysiological effects of MV settings in healthy and injured lungs. We aimed to study the effects of positive end-expiratory pressure (PEEP) and tidal volume (VT) on the distributions of regional ventilation and perfusion by electrical impedance tomography (EIT) in healthy and injured lungs. METHODS: One-hit acute lung injury model was established in 6 piglets by repeated lung lavages (injured group). Four ventilated piglets served as the control group. A randomized sequence of any possible combination of three VT (7, 10, and 15 ml/kg) and four levels of PEEP (5, 8, 10, and 12 cmH2O) was performed in all animals. Ventilation and perfusion distributions were computed by EIT within three regions-of-interest (ROIs): nondependent, middle, dependent. A mixed design with one between-subjects factor (group: intervention or control), and two within-subjects factors (PEEP and VT) was used, with a three-way mixed analysis of variance (ANOVA). RESULTS: Two-way interactions between PEEP and group, and VT and group, were observed for the dependent ROI (p = 0.035 and 0.012, respectively), indicating that the increase in the dependent ROI ventilation was greater at higher PEEP and VT in the injured group than in the control group. A two-way interaction between PEEP and VT was observed for perfusion distribution in each ROI: nondependent (p = 0.030), middle (p = 0.006), and dependent (p = 0.001); no interaction was observed between injured and control groups. CONCLUSIONS: Large PEEP and VT levels were associated with greater pulmonary ventilation of the dependent lung region in experimental lung injury, whereas they affected pulmonary perfusion of all lung regions both in the control and in the experimental lung injury groups.
RESUMEN
BACKGROUND: Dynamic single-slice CT (dCT) is increasingly used to examine the intra-tidal, physiological variation in aeration and lung density in experimental lung injury. The ability of dCT to predict whole-lung values is unclear, especially for dual-energy CT (DECT) variables. Additionally, the effect of inspiration-related lung movement on CT variables has not yet been quantified. METHODS: Eight domestic pigs were studied under general anaesthesia, including four following saline-lavage surfactant depletion (lung injury model). DECT, dCT and whole-lung images were collected at 12 ventilatory settings. Whole-lung single energy scans images were collected during expiratory and inspiratory apnoeas at positive end-expiratory pressures from 0 to 20 cmH2O. Means and distributions of CT variables were calculated for both dCT and whole-lung images. The cranio-caudal displacement of the anatomical slice was measured from whole-lung images. RESULTS: Mean CT density and volume fractions of soft tissue, gas, iodinated blood, atelectasis, poor aeration, normal aeration and overdistension correlated between dCT and the whole lung (r2 0.75-0.94) with agreement between CT density distributions (r 0.89-0.97). Inspiration increased the matching between dCT and whole-lung values and was associated with a movement of 32% (SD 15%) of the imaged slice out of the scanner field-of-view. This effect introduced an artefactual increase in dCT mean CT density during inspiration, opposite to that caused by the underlying physiology. CONCLUSIONS: Overall, dCT closely approximates whole-lung aeration and density. This approximation is improved by inspiration where a decrease in CT density and atelectasis can be interpreted as physiological rather than artefactual.
RESUMEN
Modern ventilatory strategies are based on the assumption that lung terminal airspaces act as isotropic balloons that progressively accommodate gas. Phase contrast synchrotron radiation computed tomography (PCSRCT) has recently challenged this concept, showing that in healthy lungs, deflation mechanisms are based on the sequential de-recruitment of airspaces. Using PCSRCT scans in an animal model of acute respiratory distress syndrome (ARDS), this study examined whether the numerosity (ASnum) and dimension (ASdim) of lung airspaces change during a deflation maneuver at decreasing levels of positive end-expiratory pressure (PEEP) at 12, 9, 6, 3, and 0 cmH2O. Deflation was associated with significant reduction of ASdim both in the whole lung section (passing from from 13.1 ± 2.0 at PEEP 12 to 7.6 ± 4.2 voxels at PEEP 0) and in single concentric regions of interest (ROIs). However, the regression between applied PEEP and ASnum was significant in the whole slice (ranging from 188 ± 52 at PEEP 12 to 146.4 ± 96.7 at PEEP 0) but not in the single ROIs. This mechanism of deflation in which reduction of ASdim is predominant, differs from the one observed in healthy conditions, suggesting that the peculiar alveolar micromechanics of ARDS might play a role in the deflation process.
RESUMEN
INTRODUCTION: The mechanisms of lung inflation and deflation are only partially known. Ventilatory strategies to support lung function rely upon the idea that lung alveoli are isotropic balloons that progressively inflate or deflate and that lung pressure/volume curves derive only by the interplay of critical opening pressures, critical closing pressures, lung history, and position of alveoli inside the lung. This notion has been recently challenged by subpleural microscopy, magnetic resonance, and computed tomography (CT). Phase-contrast synchrotron radiation CT (PC-SRCT) can yield in vivo images at resolutions higher than conventional CT. OBJECTIVES: We aimed to assess the numerosity (ASden) and the extension of the surface of airspaces (ASext) in healthy conditions at different volumes, during stepwise lung deflation, in concentric regions of the lung. METHODS: The study was conducted in seven anesthetized New Zealand rabbits. They underwent PC-SRCT scans (resolution of 47.7 µm) of the lung at five decreasing positive end expiratory pressure (PEEP) levels of 12, 9, 6, 3, and 0 cmH2O during end-expiratory holds. Three concentric regions of interest (ROIs) of the lung were studied: subpleural, mantellar, and core. The images were enhanced by phase contrast algorithms. ASden and ASext were computed by using the Image Processing Toolbox for MatLab. Statistical tests were used to assess any significant difference determined by PEEP or ROI on ASden and ASext. RESULTS: When reducing PEEP, in each ROI the ASden significantly decreased. Conversely, ASext variation was not significant except for the core ROI. In the latter, the angular coefficient of the regression line was significantly low. CONCLUSION: The main mechanism behind the decrease in lung volume at PEEP reduction is derecruitment. In our study involving lung regions laying on isogravitational planes and thus equally influenced by gravitational forces, airspace numerosity and extension of surface depend on the local mechanical properties of the lung.
RESUMEN
OBJECTIVES: Airway closure is involved in adverse effects of mechanical ventilation under both general anesthesia and in acute respiratory distress syndrome patients. However, direct evidence and characterization of individual airway closure is lacking. Here, we studied the same individual peripheral airways in intact lungs of anesthetized and mechanically ventilated rabbits, at baseline and following lung injury, using high-resolution synchrotron phase-contrast CT. DESIGN: Laboratory animal investigation. SETTING: European synchrotron radiation facility. SUBJECTS: Six New-Zealand White rabbits. INTERVENTIONS: The animals were anesthetized, paralyzed, and mechanically ventilated in pressure-controlled mode (tidal volume, 6 mL/kg; respiratory rate, 40; FIO2, 0.6; inspiratory:expiratory, 1:2; and positive end-expiratory pressure, 3 cm H2O) at baseline. Imaging was performed with a 47.5 × 47.5 × 47.5 µm voxel size, at positive end-expiratory pressure 12, 9, 6, 3, and 0 cm H2O. The imaging sequence was repeated after lung injury induced by whole-lung lavage and injurious ventilation in four rabbits. Cross-sections of the same individual airways were measured. MEASUREMENTS AND MAIN RESULTS: The airways were measured at baseline (n = 48; radius, 1.7 to 0.21 mm) and after injury (n = 32). Closure was observed at 0 cm H2O in three of 48 airways (6.3%; radius, 0.35 ± 0.08 mm at positive end-expiratory pressure 12) at baseline and five of 32 (15.6%; radius, 0.28 ± 0.09 mm) airways after injury. Cross-section was significantly reduced at 3 and 0 cm H2O, after injury, with a significant relation between the relative change in cross-section and airway radius at 12 cm H2O in injured, but not in normal lung (R = 0.60; p < 0.001). CONCLUSIONS: Airway collapsibility increases in the injured lung with a significant dependence on airway caliber. We identify "compliant collapse" as the main mechanism of airway closure in initially patent airways, which can occur at more than one site in individual airways.
Asunto(s)
Obstrucción de las Vías Aéreas/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Respiración Artificial/efectos adversos , Animales , Conejos , Tomografía Computarizada por Rayos XAsunto(s)
Respiración Artificial/tendencias , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Humanos , Pulmón/anatomía & histología , Pulmón/fisiopatología , Respiración Artificial/métodos , Fenómenos Fisiológicos Respiratorios , Lesión Pulmonar Inducida por Ventilación Mecánica/complicacionesRESUMEN
BACKGROUND: One-lung ventilation (OLV) with induced capnothorax carries the risk of severely impaired ventilation and circulation. Optimal PEEP may mitigate the physiological perturbations during these conditions. METHODS: Right-sided OLV with capnothorax (16 cm H2 O) on the left side was initiated in eight anesthetized, muscle-relaxed piglets. A recruitment maneuver and a decremental PEEP titration from PEEP 20 cm H2 O to zero end-expiratory pressure (ZEEP) was performed. Regional ventilation and perfusion were studied with electrical impedance tomography and computer tomography of the chest was used. End-expiratory lung volume and hemodynamics were recorded and. RESULTS: PaO2 peaked at PEEP 12 cm H2 O (49 ± 14 kPa) and decreased to 11 ± 5 kPa at ZEEP (P < 0.001). PaCO2 was 9.5 ± 1.3 kPa at 20 cm H2 O PEEP and did not change when PEEP step-wise was reduced to 12 cm H2 O PaCO2. At lower PEEP, PaCO2 increased markedly. The ventilatory driving pressure was lowest at PEEP 14 cm H2 O (19.6 ± 5.8 cm H2 O) and increased to 38.3 ± 6.1 cm H2 O at ZEEP (P < 0.001). When reducing PEEP below 12-14 cm H2 O ventilation shifted from the dependent to the nondependent regions of the ventilated lung (P = 0.003), and perfusion shifted from the ventilated to the nonventilated lung (P = 0.02). CONCLUSION: Optimal PEEP was 12-18 cm H2 O and probably relates to capnothorax insufflation pressure. With suboptimal PEEP, ventilation/perfusion mismatch in the ventilated lung and redistribution of blood flow to the nonventilated lung occurred.
Asunto(s)
Insuflación/métodos , Ventilación Unipulmonar/métodos , Ápice del Flujo Espiratorio , Anestesia , Animales , Procedimientos Quirúrgicos Cardíacos , Impedancia Eléctrica , Insuflación/efectos adversos , Ventilación Unipulmonar/efectos adversos , Consumo de Oxígeno , Músculos Respiratorios/fisiología , Porcinos , Tórax/diagnóstico por imagen , Tórax/fisiología , Volumen de Ventilación Pulmonar , TomografíaRESUMEN
OBJECTIVE: It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. DESIGN: Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. SETTING: University animal research laboratory. SUBJECTS: Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. INTERVENTIONS: Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. MEASUREMENTS AND MAIN RESULTS: The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals), which was not observed in the control animals. CONCLUSION: In this porcine acute respiratory distress syndrome model, regional lung strain was spatially correlated with regional inflammation, supporting that strain is a relevant and prominent determinant of ventilator-induced lung injury.
Asunto(s)
Pulmón/fisiopatología , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/fisiopatología , Animales , Modelos Animales de Enfermedad , Inflamación/diagnóstico por imagen , Inflamación/etiología , Inflamación/fisiopatología , Pulmón/diagnóstico por imagen , Tomografía de Emisión de Positrones , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Porcinos , Tomografía Computarizada por Rayos X , Lesión Pulmonar Inducida por Ventilación Mecánica/diagnóstico por imagen , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatologíaRESUMEN
BACKGROUND: Increasing numbers of patients with obstructive lung diseases need anesthesia for surgery. These conditions are associated with pulmonary ventilation/perfusion (VA/Q) mismatch affecting kinetics of volatile anesthetics. Pure shunt might delay uptake of less soluble anesthetic agents but other forms of VA/Q scatter have not yet been examined. Volatile anesthetics with higher blood solubility would be less affected by VA/Q mismatch. We therefore compared uptake and elimination of higher soluble isoflurane and less soluble desflurane in a piglet model. METHODS: Juvenile piglets (26.7 ± 1.5 kg) received either isoflurane (n = 7) or desflurane (n = 7). Arterial and mixed venous blood samples were obtained during wash-in and wash-out of volatile anesthetics before and during bronchoconstriction by methacholine inhalation (100 µg/ml). Total uptake and elimination were calculated based on partial pressure measurements by micropore membrane inlet mass spectrometry and literature-derived partition coefficients and assumed end-expired to arterial gradients to be negligible. VA/Q distribution was assessed by the multiple inert gas elimination technique. RESULTS: Before methacholine inhalation, isoflurane arterial partial pressures reached 90% of final plateau within 16 min and decreased to 10% after 28 min. By methacholine nebulization, arterial uptake and elimination delayed to 35 and 44 min. Desflurane needed 4 min during wash-in and 6 min during wash-out, but with bronchoconstriction 90% of both uptake and elimination was reached within 15 min. CONCLUSIONS: Inhaled methacholine induced bronchoconstriction and inhomogeneous VA/Q distribution. Solubility of inhalational anesthetics significantly influenced pharmacokinetics: higher soluble isoflurane is less affected than fairly insoluble desflurane, indicating different uptake and elimination during bronchoconstriction.
Asunto(s)
Anestésicos por Inhalación/sangre , Broncoconstricción/fisiología , Isoflurano/análogos & derivados , Isoflurano/sangre , Ventilación Pulmonar/fisiología , Relación Ventilacion-Perfusión/fisiología , Anestésicos por Inhalación/administración & dosificación , Animales , Animales Recién Nacidos , Desflurano , Isoflurano/administración & dosificación , Ventilación Pulmonar/efectos de los fármacos , Respiración Artificial/métodos , Porcinos , Relación Ventilacion-Perfusión/efectos de los fármacosRESUMEN
OBJECTIVES: To compare the effects of two lung-protective ventilation strategies on pulmonary vascular mechanics in early acute respiratory distress syndrome. DESIGN: Experimental study. SETTING: University animal research laboratory. SUBJECTS: Twelve pigs (30.8 ± 2.5 kg). INTERVENTIONS: Acute respiratory distress syndrome was induced by repeated lung lavages and injurious mechanical ventilation. Thereafter, animals were randomized to 4 hours ventilation according to the Acute Respiratory Distress Syndrome Network protocol or to an open lung approach strategy. Pressure and flow sensors placed at the pulmonary artery trunk allowed continuous assessment of pulmonary artery resistance, effective elastance, compliance, and reflected pressure waves. Respiratory mechanics and gas exchange data were collected. MEASUREMENTS AND MAIN RESULTS: Acute respiratory distress syndrome led to pulmonary vascular mechanics deterioration. Four hours after randomization, pulmonary vascular mechanics was similar in Acute Respiratory Distress Syndrome Network and open lung approach: resistance (578 ± 252 vs 626 ± 153 dyn.s/cm; p = 0.714), effective elastance, (0.63 ± 0.22 vs 0.58 ± 0.17 mm Hg/mL; p = 0.710), compliance (1.19 ± 0.8 vs 1.50 ± 0.27 mL/mm Hg; p = 0.437), and reflection index (0.36 ± 0.04 vs 0.34 ± 0.09; p = 0.680). Open lung approach as compared to Acute Respiratory Distress Syndrome Network was associated with improved dynamic respiratory compliance (17.3 ± 2.6 vs 10.5 ± 1.3 mL/cm H2O; p < 0.001), driving pressure (9.6 ± 1.3 vs 19.3 ± 2.7 cm H2O; p < 0.001), and venous admixture (0.05 ± 0.01 vs 0.22 ± 0.03, p < 0.001) and lower mean pulmonary artery pressure (26 ± 3 vs 34 ± 7 mm Hg; p = 0.045) despite of using a higher positive end-expiratory pressure (17.4 ± 0.7 vs 9.5 ± 2.4 cm H2O; p < 0.001). Cardiac index, however, was lower in open lung approach (1.42 ± 0.16 vs 2.27 ± 0.48 L/min; p = 0.005). CONCLUSIONS: In this experimental model, Acute Respiratory Distress Syndrome Network and open lung approach affected pulmonary vascular mechanics similarly. The use of higher positive end-expiratory pressures in the open lung approach strategy did not worsen pulmonary vascular mechanics, improved lung mechanics, and gas exchange but at the expense of a lower cardiac index.