RESUMEN
Immunity has shown potentials in informing drug development for cardiometabolic diseases, such as type 2 diabetes (T2D) and coronary artery disease (CAD). Here, we performed a transcriptome-wide Mendelian randomization (MR) study to estimate the putative causal effects of 11,021 gene expression profiles during CD4+ T cells activation on the development of T2D and CAD. Robust MR and colocalization evidence was observed for 162 genes altering T2D risk and 80 genes altering CAD risk, with 12% and 16% respectively demonstrating CD4+ T cell specificity. We observed temporal causal patterns during T cell activation in 69 gene-T2D pairs and 34 gene-CAD pairs. These genes were eight times more likely to show robust genetic evidence. We further identified 25 genes that were targets for drugs under clinical investigation, including LIPA and GCK. This study provides evidence to support immune-to-metabolic disease connections, and prioritises immune-mediated drug targets for cardiometabolic diseases.
Asunto(s)
Linfocitos T CD4-Positivos , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Activación de Linfocitos , Análisis de la Aleatorización Mendeliana , Transcriptoma , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/inmunología , Activación de Linfocitos/efectos de los fármacos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/inmunología , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma CompletoRESUMEN
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
RESUMEN
We explore the relation between age at menarche, parity and age at natural menopause with 249 metabolic traits in over 65,000 UK Biobank women using multivariable regression, Mendelian randomization and negative control (parity only). Older age of menarche is related to a less atherogenic metabolic profile in multivariable regression and Mendelian randomization, which is largely attenuated when accounting for adult body mass index. In multivariable regression, higher parity relates to more particles and lipids in VLDL, which are not observed in male negative controls. In multivariable regression and Mendelian randomization, older age at natural menopause is related to lower concentrations of inflammation markers, but we observe inconsistent results for LDL-related traits due to chronological age-specific effects. For example, older age at menopause is related to lower LDL-cholesterol in younger women but slightly higher in older women. Our findings support a role of reproductive traits on later life metabolic profile and provide insights into identifying novel markers for the prevention of adverse cardiometabolic outcomes in women.
Asunto(s)
Menarquia , Menopausia , Adulto , Humanos , Masculino , Femenino , Anciano , Reproducción , Índice de Masa Corporal , Metaboloma , Factores de Riesgo , Factores de EdadRESUMEN
BACKGROUND: Sleep and gut microbiota are emerging putative risk factors for several physical, mental, and cognitive conditions. Sleep deprivation has been shown to be linked with unhealthy microbiome environments in animal studies. However, in humans, the results are mixed. Epidemiological studies evaluating the effect of accelerometer-based sleep measures on gut microbiome are scarce. This study aims to explore the relationship between sleep duration and efficiency with the gut microbiota in adolescence. METHODS: A subsample of 352 participants from the 2004 Pelotas (Brazil) Birth Cohort Study with sleep and fecal microbiota data available were included in the study. Sleep duration and sleep efficiency were obtained from actigraphy information at 11 years old whereas microbiota information from fecal samples was collected at 12 years. The fecal microbiota was analyzed via Illumina MiSeq (16S rRNA V3-V4 region) and the UNOISE pipeline. Alpha was assessed in QIIME2. Association measures for sleep variables and microbial α-diversity, and bacterial relative abundance were assessed through generalized models (linear and logistic regression), adjusting for maternal and child variables confounders. RESULTS: Adjusted models showed that sleep duration was positively associated with Simpson index of α-diversity (ß = 0.003; CI95 %: 0.00004; 0.01). Both sleep duration (OR = 0.43; CI95 % 0.25; 0.74) and efficiency (OR = 0.55; CI95 % 0.38; 0.78) were associated with lower Bacteroidetes abundance. CONCLUSION: Our results suggest that sleep duration and efficiency are linked to gut microbiota diversity and composition even with 1-2 years gap from exposure to outcome. The findings support the role of sleep in the gut-brain axis as well as provide insights on how to improve microbiota health.
Asunto(s)
Microbioma Gastrointestinal , Niño , Humanos , Acelerometría , Cohorte de Nacimiento , Brasil , Estudios de Cohortes , ARN Ribosómico 16S/genética , Sueño , AdolescenteRESUMEN
BACKGROUND: Higher maternal pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and perinatal outcomes. However, whether these associations are causal remains unclear. METHODS: We explored the relation of maternal pre-/early-pregnancy BMI with 20 pregnancy and perinatal outcomes by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, and paternal negative control analyses), including data from over 400,000 women. RESULTS: All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal anaemia, delivering a small-for-gestational-age baby and initiating breastfeeding, but higher odds of hypertensive disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre-labour membrane rupture, induction of labour, caesarean section, large-for-gestational age, high birthweight, low Apgar score at 1 min, and neonatal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates from Mendelian randomisation. CONCLUSIONS: Our findings support a causal role for maternal pre-/early-pregnancy BMI on 14 out of 20 adverse pregnancy and perinatal outcomes. Pre-conception interventions to support women maintaining a healthy BMI may reduce the burden of obstetric and neonatal complications. FUNDING: Medical Research Council, British Heart Foundation, European Research Council, National Institutes of Health, National Institute for Health Research, Research Council of Norway, Wellcome Trust.
Asunto(s)
Diabetes Gestacional , Hipertensión Inducida en el Embarazo , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Índice de Masa Corporal , Cesárea , Hipertensión Inducida en el Embarazo/epidemiología , Preeclampsia/epidemiología , Análisis de la Aleatorización MendelianaRESUMEN
Fetal growth is an indicator of fetal survival, regulated by maternal and fetal factors, but little is known about the underlying molecular mechanisms. We used Mendelian randomization to explore the effects of maternal and fetal genetically-instrumented plasma proteins on birth weight using genome-wide association summary data (n=406,063 with maternal and/or fetal genotype), with independent replication (n=74,932 mothers and n=62,108 offspring), and colocalisation. Higher genetically-predicted maternal levels of PCSK1 increased birthweight (mean-difference: 9g (95% CI: 5g, 13g) per 1 standard deviation protein level). Higher maternal levels of LGALS4 decreased birthweight (-54g (-29g, -80g)), as did VCAM1, RAD51D and GP1BA. In the offspring, higher genetically-predicted fetal levels of LGALS4 (46g (23g, 70g)) increased birthweight, alongside FCGR2B. Higher offspring levels of PCSK1 decreased birth weight (-9g (-16g, 4g), alongside LEPR. Results support maternal and fetal protein effects on birth weight, implicating roles for glucose metabolism, energy homeostasis, endothelial function and adipocyte differentiation.
RESUMEN
BACKGROUND: Measurement error in exposures and confounders can bias exposure-outcome associations but is rarely considered. We aimed to assess random measurement error of all continuous variables in UK Biobank and explore approaches to mitigate its impact on exposure-outcome associations. METHODS: Random measurement error was assessed using intraclass correlation coefficients (ICCs) for all continuous variables with repeat measures. Regression calibration was used to correct for random error in exposures and confounders, using the associations of red blood cell distribution width (RDW), C-reactive protein (CRP) and 25-hydroxyvitamin D [25(OH)D] with mortality as illustrative examples. RESULTS: The 2858 continuous variables with repeat measures varied in sample size from 109 to 49â121. They fell into three groups: (i) baseline visit [529 variables; median (interquartile range) ICC = 0.64 (0.57, 0.83)]; (ii) online diet by 24-h recall [22 variables; 0.35 (0.30, 0.40)] and (iii) imaging measures [2307 variables; 0.85 (0.73, 0.94)]. Highest ICCs were for anthropometric and medical history measures, and lowest for dietary and heart magnetic resonance imaging.The ICCs (95% confidence interval) for RDW, CRP and 25(OH)D were 0.52 (0.51, 0.53), 0.29 (0.27, 0.30) and 0.55 (0.54, 0.56), respectively. Higher RDW and levels of CRP were associated with higher risk of all-cause mortality, and higher concentration of 25(OH)D with lower risk. After correction for random measurement error in the main exposure, the associations all strengthened. Confounder correction did not influence estimates. CONCLUSIONS: Random measurement error varies widely and is often non-negligible. For UK Biobank we provide relevant statistics and adaptable code to help other researchers explore and correct for this.
Asunto(s)
Bancos de Muestras Biológicas , Dieta , Humanos , Sesgo , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: Observational studies and conventional Mendelian randomization (MR) studies showed inconclusive evidence to support the association between omega-3 fatty acids and type 2 diabetes. We aim to evaluate the causal effect of omega-3 fatty acids on type 2 diabetes mellitus (T2DM), and the distinct intermediate phenotypes linking the two. METHODS: Two-sample MR was performed using genetic instruments derived from a recent genome-wide association study (GWAS) of omega-3 fatty acids (N = 114,999) from UK Biobank and outcome data obtained from a large-scale T2DM GWAS (62,892 cases and 596,424 controls) in European ancestry. MR-Clust was applied to determine clustered genetic instruments of omega-3 fatty acids that influences T2DM. Two-step MR analysis was used to identify potential intermediate phenotypes (e.g. glycemic traits) that linking omega-3 fatty acids with T2DM. RESULTS: Univariate MR showed heterogenous effect of omega-3 fatty acids on T2DM. At least two pleiotropic effects between omega-3 fatty acids and T2DM were identified using MR-Clust. For cluster 1 with seven instruments, increasing omega-3 fatty acids reduced T2DM risk (OR: 0.52, 95%CI 0.45-0.59), and decreased HOMA-IR (ß = - 0.13, SE = 0.05, P = 0.02). On the contrary, MR analysis using 10 instruments in cluster 2 showed that increasing omega-3 fatty acids increased T2DM risk (OR:1.10; 95%CI 1.06-1.15), and decreased HOMA-B (ß = - 0.04, SE = 0.01, P = 4.52 × 10-5). Two-step MR indicated that increasing omega-3 fatty acid levels decreased T2DM risk via decreasing HOMA-IR in cluster 1, while increased T2DM risk via decreasing HOMA-B in cluster 2. CONCLUSIONS: This study provides evidence to support two distinct pleiotropic effects of omega-3 fatty acids on T2DM risk influenced by different gene clusters, which could be partially explained by distinct effects of omega-3 fatty acids on insulin resistance and beta cell dysfunction. The pleiotropic feature of omega-3 fatty acids variants and its complex relationships with T2DM need to be carefully considered in future genetic and clinical studies.
Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos Omega-3 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
BACKGROUND: Inflammation is associated with depression, but causality remains unclear. We investigated potential causality and direction of effect between inflammation and depression. METHODS: Using data from the ALSPAC birth cohort (n = 4021; 42.18 % male), we used multivariable regression to investigate bidirectional longitudinal associations of GlycA and depression and depression symptoms, assessed at ages 18y and 24y. We used two-sample Mendelian randomization (MR) to investigate potential causality and directionality. Genetic variants for GlycA were obtained from UK Biobank (UKB) (N = 115,078); for depression from the Psychiatric Genomics Consortium and UKB (N = 500,199); and for depressive symptoms (N = 161,460) from the Social Science Genetic Association Consortium. In addition to the Inverse Variance Weighted method, we used sensitivity analyses to strengthen causal inference. We conducted multivariable MR adjusting for body mass index (BMI) due to known genetic correlation between inflammation, depression and BMI. RESULTS: In the cohort analysis, after adjusting for potential confounders we found no evidence of associations between GlycA and depression symptoms score or vice versa. We observed an association between GlycA and depression (OR = 1â18, 95 % CI: 1â03-1â36). MR suggested no causal effect of GlycA on depression, but there was a causal effect of depression on GlycA (mean difference in GlycA = 0â09; 95 % CI: 0â03-0â16), which was maintained in some, but not all, sensitivity analyses. LIMITATIONS: The GWAS sample overlap could incur bias. CONCLUSION: We found no consistent evidence for an effect of GlycA on depression. There was evidence that depression increases GlycA in the MR analysis, but this may be confounded/mediated by BMI.
Asunto(s)
Depresión , Análisis de la Aleatorización Mendeliana , Humanos , Masculino , Femenino , Análisis de la Aleatorización Mendeliana/métodos , Depresión/epidemiología , Depresión/genética , Causalidad , Estudios de Cohortes , Inflamación/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain. METHODS: Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures. FINDINGS: Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07-1.11]), esophageal squamous cell carcinoma (1.16 [1.06-1.26]), lung cancer (1.06 [1.03-1.08]) and basal cell carcinoma (1.05 [1.02-1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99-1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99-1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95-1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98-1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding. INTERPRETATION: The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease. FUNDING: Cancer Resesrch UK (C52724/A20138, C18281/A19169). UK Medical Research Council (MR/P014054/1). National Institute for Health Research (NIHR202411). UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4). National Cancer Institute (R00 CA215360). National Institutes of Health (U01 CA164973, R01 CA60987, R01 CA72520, U01 CA74806, R01 CA55874, U01 CA164973 and U01 CA164973).
Asunto(s)
Neoplasias Colorrectales , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ácidos Grasos Omega-3 , Enfermedades Inflamatorias del Intestino , Humanos , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Polimorfismo de Nucleótido SimpleRESUMEN
Background: Recognizing the early signs of cancer risk is vital for informing prevention, early detection, and survival. Methods: To investigate whether changes in circulating metabolites characterise the early stages of colorectal cancer (CRC) development, we examined associations between a genetic risk score (GRS) associated with CRC liability (72 single nucleotide polymorphisms) and 231 circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon Longitudinal Study of Parents and Children (N=6,221). Linear regression models were applied to examine associations between genetic liability to colorectal cancer and circulating metabolites measured in the same individuals at age 8, 16, 18 and 25 years. Results: The GRS for CRC was associated with up to 28% of the circulating metabolites at FDR-P<0.05 across all time points, particularly with higher fatty acids and very-low- and low-density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites measured in a random subset of UK Biobank participants (N=118,466, median age 58y) revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most strongly associated with higher CRC risk. Conclusions: These analyses suggest that higher genetic liability to CRC can cause early alterations in systemic metabolism, and suggest that fatty acids may play an important role in CRC development. Funding: This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, the Wellcome Trust, the Medical Research Council, Diabetes UK, the University of Bristol NIHR Biomedical Research Centre, and Cancer Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol - http://www.bristol.ac.uk/acrc/.
RESUMEN
BACKGROUND: Congenital heart diseases (CHDs) remain a significant cause of infant morbidity and mortality. Epidemiological studies have explored maternal risk factors for offspring CHDs, but few have used genetic epidemiology methods to improve causal inference. METHODS: Three birth cohorts, including 65,510 mother/offspring pairs (N = 562 CHD cases) were included. We used Mendelian randomisation (MR) analyses to explore the effects of genetically predicted maternal body mass index (BMI), smoking and alcohol on offspring CHDs. We generated genetic risk scores (GRS) using summary data from large-scale genome-wide association studies (GWAS) and validated the strength and relevance of the genetic instrument for exposure levels during pregnancy. Logistic regression was used to estimate the odds ratio (OR) of CHD per 1 standard deviation (SD) higher GRS. Results for the three cohorts were combined using random-effects meta-analyses. We performed several sensitivity analyses including multivariable MR to check the robustness of our findings. RESULTS: The GRSs associated with the exposures during pregnancy in all three cohorts. The associations of the GRS for maternal BMI with offspring CHD (pooled OR (95% confidence interval) per 1SD higher GRS: 0.95 (0.88, 1.03)), lifetime smoking (pooled OR: 1.01 (0.93, 1.09)) and alcoholic drinks per week (pooled OR: 1.06 (0.98, 1.15)) were close to the null. Sensitivity analyses yielded similar results. CONCLUSIONS: Our results do not provide robust evidence of an effect of maternal BMI, smoking or alcohol on offspring CHDs. However, results were imprecise. Our findings need to be replicated, and highlight the need for more and larger studies with maternal and offspring genotype and offspring CHD data.
Asunto(s)
Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas , Fumar , Femenino , Humanos , Lactante , Embarazo , Índice de Masa Corporal , Etanol , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/genética , Fumar/efectos adversos , Fumar/epidemiología , Análisis de la Aleatorización MendelianaRESUMEN
BACKGROUND: Amino acids are key to protein synthesis, energy metabolism, cell signaling and gene expression; however, the contribution of specific maternal amino acids to fetal growth is unclear. METHODS: We explored the effect of maternal circulating amino acids on fetal growth, proxied by birthweight, using two-sample Mendelian randomisation (MR) and summary data from a genome-wide association study (GWAS) of serum amino acids levels (sample 1, n = 86,507) and a maternal GWAS of offspring birthweight in UK Biobank and Early Growth Genetics Consortium, adjusting for fetal genotype effects (sample 2, n = 406,063 with maternal and/or fetal genotype effect estimates). A total of 106 independent single nucleotide polymorphisms robustly associated with 19 amino acids (p < 4.9 × 10-10) were used as genetic instrumental variables (IV). Wald ratio and inverse variance weighted methods were used in MR main analysis. A series of sensitivity analyses were performed to explore IV assumption violations. FINDINGS: Our results provide evidence that maternal circulating glutamine (59 g offspring birthweight increase per standard deviation increase in maternal amino acid level, 95% CI: 7, 110) and serine (27 g, 95% CI: 9, 46) raise, while leucine (-59 g, 95% CI: -106, -11) and phenylalanine (-25 g, 95% CI: -47, -4) lower offspring birthweight. These findings are supported by sensitivity analyses. INTERPRETATION: Our findings strengthen evidence for key roles of maternal circulating amino acids during pregnancy in healthy fetal growth. FUNDING: A full list of funding bodies that contributed to this study can be found under Acknowledgments.
Asunto(s)
Aminoácidos , Estudio de Asociación del Genoma Completo , Humanos , Embarazo , Femenino , Peso al Nacer/genética , Genotipo , Desarrollo Fetal , Análisis de la Aleatorización Mendeliana/métodos , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Non-random selection of analytic subsamples could introduce selection bias in observational studies. We explored the potential presence and impact of selection in studies of SARS-CoV-2 infection and COVID-19 prognosis. METHODS: We tested the association of a broad range of characteristics with selection into COVID-19 analytic subsamples in the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK Biobank (UKB). We then conducted empirical analyses and simulations to explore the potential presence, direction and magnitude of bias due to this selection (relative to our defined UK-based adult target populations) when estimating the association of body mass index (BMI) with SARS-CoV-2 infection and death-with-COVID-19. RESULTS: In both cohorts, a broad range of characteristics was related to selection, sometimes in opposite directions (e.g. more-educated people were more likely to have data on SARS-CoV-2 infection in ALSPAC, but less likely in UKB). Higher BMI was associated with higher odds of SARS-CoV-2 infection and death-with-COVID-19. We found non-negligible bias in many simulated scenarios. CONCLUSIONS: Analyses using COVID-19 self-reported or national registry data may be biased due to selection. The magnitude and direction of this bias depend on the outcome definition, the true effect of the risk factor and the assumed selection mechanism; these are likely to differ between studies with different target populations. Bias due to sample selection is a key concern in COVID-19 research based on national registry data, especially as countries end free mass testing. The framework we have used can be applied by other researchers assessing the extent to which their results may be biased for their research question of interest.
Asunto(s)
COVID-19 , Adulto , Niño , Humanos , Sesgo , COVID-19/epidemiología , Estudios Longitudinales , SARS-CoV-2 , Sesgo de Selección , Estudios Observacionales como AsuntoRESUMEN
BACKGROUND: Coffee consumption has been associated with several adverse pregnancy outcomes, although data from randomized-controlled trials are lacking. We investigate whether there is a causal relationship between coffee consumption and miscarriage, stillbirth, birthweight, gestational age and pre-term birth using Mendelian randomization (MR). METHODS: A two-sample MR study was performed using summary results data from a genome-wide association meta-analysis of coffee consumption (N = 91â462) from the Coffee and Caffeine Genetics Consortium. Outcomes included self-reported miscarriage (N = 49â996 cases and 174â109 controls from a large meta-analysis); the number of stillbirths [N = 60â453 from UK Biobank (UKBB)]; gestational age and pre-term birth (N = 43â568 from the 23andMe, Inc cohort) and birthweight (N = 297â356 reporting own birthweight and N = 210â248 reporting offspring's birthweight from UKBB and the Early Growth Genetics Consortium). Additionally, a one-sample genetic risk score (GRS) analysis of coffee consumption in UKBB women (N up to 194â196) and the Avon Longitudinal Study of Parents and Children (N up to 6845 mothers and 4510 children) and its relationship with offspring outcomes was performed. RESULTS: Both the two-sample MR and one-sample GRS analyses showed no change in risk of sporadic miscarriages, stillbirths, pre-term birth or effect on gestational age connected to coffee consumption. Although both analyses showed an association between increased coffee consumption and higher birthweight, the magnitude of the effect was inconsistent. CONCLUSION: Our results suggest that coffee consumption during pregnancy might not itself contribute to adverse outcomes such as stillbirth, sporadic miscarriages and pre-term birth or lower gestational age or birthweight of the offspring.
Asunto(s)
Aborto Espontáneo , Mortinato , Embarazo , Niño , Humanos , Femenino , Peso al Nacer , Mortinato/epidemiología , Mortinato/genética , Café/efectos adversos , Aborto Espontáneo/epidemiología , Edad Gestacional , Estudios Longitudinales , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Nacimiento a TérminoRESUMEN
BACKGROUND: Whether non-alcoholic fatty liver disease (NAFLD) causes cardiovascular disease (CVD) and type 2 diabetes (T2D) is unclear and possible differences between ethnicities have not been thoroughly explored. We used Mendelian randomization (MR) to assess the role of NAFLD in CVD and T2D risk in Europeans and East Asians. METHODS: We conducted a MR study using genetic predictors of alanine aminotransferase (ALT), liability to NAFLD, aspartate transaminase (AST), liver magnetic resonance imaging corrected T1 and proton density fat fraction and combined them with genome-wide association studies (GWAS) summary statistics of CVD, T2D and glycaemic traits (sample size ranging from 14â400 to 977â320). Inverse-variance weighted analysis was used to assess the effect of NAFLD in these outcomes, with sensitivity analyses and replication in FinnGen. We conducted analyses in East Asians using ethnicity-specific genetic predictors of ALT and AST, and the respective outcome GWAS summary statistics. RESULTS: In Europeans, higher ALT was associated with higher T2D risk (odds ratio: 1.77 per standard deviation, 95% CI 1.5 to 2.08), with similar results for other exposures, across sensitivity analyses and in FinnGen. Although NAFLD proxies were related to higher coronary artery disease (CAD) and stroke risk, sensitivity analyses suggested possible bias by horizontal pleiotropy. In East Asians, higher ALT was possibly associated with higher T2D risk, and ALT and AST were inversely associated with CAD. CONCLUSIONS: NAFLD likely increases the risk of T2D in Europeans and East Asians. Potential differential effects on CAD between Europeans and East Asians require further investigation.
Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Pueblos del Este de Asia , Estudio de Asociación del Genoma Completo/métodos , Análisis de la Aleatorización Mendeliana , Pueblo Europeo , Enfermedad de la Arteria Coronaria/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Background: Mendelian randomization (MR) studies are susceptible to metadata errors (e.g. incorrect specification of the effect allele column) and other analytical issues that can introduce substantial bias into analyses. We developed a quality control (QC) pipeline for the Fatty Acids in Cancer Mendelian Randomization Collaboration (FAMRC) that can be used to identify and correct for such errors. Methods: We collated summary association statistics from fatty acid and cancer genome-wide association studies (GWAS) and subjected the collated data to a comprehensive QC pipeline. We identified metadata errors through comparison of study-specific statistics to external reference data sets (the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalogue and 1000 genome super populations) and other analytical issues through comparison of reported to expected genetic effect sizes. Comparisons were based on three sets of genetic variants: (i) GWAS hits for fatty acids, (ii) GWAS hits for cancer and (iii) a 1000 genomes reference set. Results: We collated summary data from 6 fatty acid and 54 cancer GWAS. Metadata errors and analytical issues with the potential to introduce substantial bias were identified in seven studies (11.6%). After resolving metadata errors and analytical issues, we created a data set of 219 842 genetic associations with 90 cancer types, generated in analyses of 566 665 cancer cases and 1 622 374 controls. Conclusions: In this large MR collaboration, 11.6% of included studies were affected by a substantial metadata error or analytical issue. By increasing the integrity of collated summary data prior to their analysis, our protocol can be used to increase the reliability of downstream MR analyses. Our pipeline is available to other researchers via the CheckSumStats package (https://github.com/MRCIEU/CheckSumStats).