Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(8): 1308-1323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990806

RESUMEN

BACKGROUND AND PURPOSE: Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH: Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS: In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS: These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.


Asunto(s)
Interleucina-33 , Sepsis , Humanos , Ratones , Animales , Niño , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos/patología , Terapia de Inmunosupresión
2.
Blood ; 138(25): 2702-2713, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34407544

RESUMEN

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Asunto(s)
Trampas Extracelulares/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Insuficiencia Multiorgánica/genética , Proteínas de Unión a Fosfato/genética , Sepsis/genética , Inhibidores del Acetaldehído Deshidrogenasa/uso terapéutico , Traslado Adoptivo , Anciano , Animales , Células Cultivadas , Disulfiram/uso terapéutico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/terapia , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Sepsis/patología , Sepsis/terapia
3.
Front Immunol ; 11: 1623, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733488

RESUMEN

Countries worldwide have confirmed a staggering number of COVID-19 cases, and it is now clear that no country is immune to the SARS-CoV-2 infection. Resource-poor countries with weaker health systems are struggling with epidemics of their own and are now in a more uncertain situation with this rapidly spreading infection. Frontline healthcare workers are succumbing to the infection in their efforts to save lives. There is an urgency to develop treatments for COVID-19, yet there is limited clinical data on the efficacy of potential drug treatments. Countries worldwide implemented a stay-at-home order to "flatten the curve" and relieve the pressure on the health system, but it is uncertain how this will unfold after the economy reopens. Trehalose, a natural glucose disaccharide, is known to impair viral function through the autophagy system. Here, we propose trehalose as a potential preventative treatment for SARS-CoV-2 infection and transmission.


Asunto(s)
Antivirales/uso terapéutico , Betacoronavirus/fisiología , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Profilaxis Posexposición/métodos , Profilaxis Pre-Exposición/métodos , Trehalosa/uso terapéutico , Adulto , Anciano , Antivirales/farmacología , Enfermedades Asintomáticas , Autofagia/efectos de los fármacos , COVID-19 , Niño , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Humanos , Persona de Mediana Edad , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2 , Trehalosa/farmacología , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
4.
Eur J Pharmacol ; 863: 172706, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31568782

RESUMEN

It is well established that sepsis induces vascular hyporesponsiveness to vasoconstrictors. Perivascular adipose tissue (PVAT) displays anti-contractile action in various blood vessels. We hypothesized that sepsis would increase the anti-contractile effect of PVAT aggravating sepsis-induced vasoplegia. Male Wistar Hannover rats were subjected to lethal sepsis by cecal ligation and puncture (CLP) method. Aorta or PVAT were collected for functional or biochemical assays 6 h after CLP surgery. Functional experiments showed that sepsis increased the anti-contractile action of PVAT in both endothelium-intact and endothelium-denuded aortas. Carboxy-PTIO, L-NAME and ODQ reversed the hypocontractility mediated by PVAT in aortas from septic rats. Inhibition of nNOS and iNOS with 7-nitroindazole and 1400 W attenuated PVAT-mediated hypocontractility during sepsis. Similar results were found in the presence of indomethacin and Ro1138452, a selective prostacyclin IP receptor antagonist. However, neither tiron nor catalase affected phenylephrine-induced contraction in aortas from septic rats. Increased levels of superoxide anion (O2•-) and 6-keto-prostaglandin F1α (stable product of prostacyclin) were detected in PVAT from septic rats. In situ quantification of reactive oxygen species and nitric oxide (NO) using fluorescent dyes revealed increased levels of both in PVAT from septic rats. The novelty of our study is that PVAT contributes to sepsis-induced vasoplegia by releasing NO and prostacyclin. These findings suggested that signaling pathways in PVAT may be considered as potential novel pharmacological therapeutic targets during sepsis-induced vasoplegia.


Asunto(s)
Tejido Adiposo/patología , Sepsis/complicaciones , Vasoplejía/etiología , Vasoplejía/patología , 6-Cetoprostaglandina F1 alfa/metabolismo , Tejido Adiposo/metabolismo , Animales , Aorta/patología , Dinoprostona/metabolismo , Masculino , Óxido Nítrico/biosíntesis , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Vasoplejía/metabolismo
5.
Biomolecules ; 9(8)2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31431000

RESUMEN

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.


Asunto(s)
Metaloendopeptidasas/metabolismo , Animales , Conducta Animal , Femenino , Masculino , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
6.
Crit Care ; 23(1): 113, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961634

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are innate defense mechanisms that are also implicated in the pathogenesis of organ dysfunction. However, the role of NETs in pediatric sepsis is unknown. METHODS: Infant (2 weeks old) and adult (6 weeks old) mice were submitted to sepsis by intraperitoneal (i.p.) injection of bacteria suspension or lipopolysaccharide (LPS). Neutrophil infiltration, bacteremia, organ injury, and concentrations of cytokine, NETs, and DNase in the plasma were measured. Production of reactive oxygen and nitrogen species and release of NETs by neutrophils were also evaluated. To investigate the functional role of NETs, mice undergoing sepsis were treated with antibiotic plus rhDNase and the survival, organ injury, and levels of inflammatory markers and NETs were determined. Blood samples from pediatric and adult sepsis patients were collected and the concentrations of NETs measured. RESULTS: Infant C57BL/6 mice subjected to sepsis or LPS-induced endotoxemia produced significantly higher levels of NETs than the adult mice. Moreover, compared to that of the adult mice, this outcome was accompanied by increased organ injury and production of inflammatory cytokines. The increased NETs were associated with elevated expression of Padi4 and histone H3 citrullination in the neutrophils. Furthermore, treatment of infant septic mice with rhDNase or a PAD-4 inhibitor markedly attenuated sepsis. Importantly, pediatric septic patients had high levels of NETs, and the severity of pediatric sepsis was positively correlated with the level of NETs. CONCLUSION: This study reveals a hitherto unrecognized mechanism of pediatric sepsis susceptibility and suggests that NETs represents a potential target to improve clinical outcomes of sepsis.


Asunto(s)
Trampas Extracelulares/microbiología , Sepsis/terapia , Animales , Carga Bacteriana/métodos , Brasil , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL/sangre , Ratones Endogámicos C57BL/microbiología , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/patología , Sepsis/mortalidad , Sepsis/patología
7.
J Infect ; 77(5): 391-397, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30226191

RESUMEN

Sepsis is an overwhelming systemic inflammation resulting from an uncontrolled infection that causes extensive tissue damage, organ dysfunction and eventually death. A growing body of evidence indicates that impaired neutrophil migration to the site of infection is associated with poor outcome in sepsis. Here we show that galectin-3 (Gal-3), an endogenous glycan-binding protein, plays a critical role in sepsis outcome. We found that serum Gal-3 concentration increased in patients with septic shock and mice undergoing sepsis induced by cecal ligation and puncture (CLP). Mice deficient in Gal-3 (Gal-3 KO) are more resistant to sepsis induced by CLP, showing lower levels of biochemical markers and neutrophil infiltration for organ injury/dysfunction than those observed in wild-type mice (WT). Furthermore, Gal-3 KO mice show an increased number of neutrophils in the primary focus of infection and reduced bacterial loads in the peritoneal cavity, blood, and lungs. Mechanistically, blood neutrophils from septic mice show higher levels of surface-bound Gal-3 than neutrophils from naive mice. The deficiency of Gal-3 was associated with increased rolling and adhesion of these cells in mesenteric venules. Our results indicate that Gal-3, secreted during sepsis, inhibits neutrophil migration into the infectious focus, which promotes the bacterial spread and worsens the outcome of sepsis.


Asunto(s)
Coinfección/sangre , Coinfección/inmunología , Galectina 3/sangre , Infiltración Neutrófila , Sepsis/inmunología , Sepsis/microbiología , Anciano , Animales , Proteínas Sanguíneas , Modelos Animales de Enfermedad , Femenino , Galectina 3/inmunología , Galectinas , Humanos , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Peritoneo/microbiología
8.
Pharmacol Res ; 117: 1-8, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27979692

RESUMEN

Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colinérgicos/farmacología , Colinérgicos/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Humanos , Sistema Inmunológico/efectos de los fármacos , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Nervio Vago/efectos de los fármacos
9.
PLoS One ; 10(10): e0139985, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26440613

RESUMEN

Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL-1 and IL-18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL-1ß (405%), IL-18 (365%), COX-2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL-18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.


Asunto(s)
Bacteriemia/metabolismo , Diarrea/metabolismo , Enfermedades Intestinales/metabolismo , Mucositis/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/fisiología , Animales , Bacteriemia/inducido químicamente , Bacteriemia/genética , Camptotecina/análogos & derivados , Diarrea/inducido químicamente , Diarrea/genética , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/genética , Mucosa Intestinal/metabolismo , Irinotecán , Ratones , Ratones Noqueados , Mucositis/inducido químicamente , Mucositis/genética , Factor 88 de Diferenciación Mieloide/genética , Peroxidasa/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
10.
J Immunol ; 191(3): 1373-82, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23817413

RESUMEN

Type 1 diabetes enhances susceptibility to infection and favors the sepsis development. In addition, diabetic mice produced higher levels of histamine in several tissues and in the blood after LPS stimulation than nondiabetic mice. In this study, we aimed to explore the role of mast cells (MCs) and histamine in neutrophil migration and, consequently, infection control in diabetic mice with mild sepsis (MS) induced by cecum ligation and puncture. We used female BALB/c, MC-sufficient (WB/B6), MC-deficient (W/W(v)), and NOD mice. Diabetic mice given MS displayed 100% mortality within 24 h, whereas all nondiabetic mice survived for at least 5 d. The mortality rate of diabetic mice was reduced to 57% after the depletion of MC granules with compound 48/80. Moreover, this pretreatment increased neutrophil migration to the focus of infection, which reduced systemic inflammatory response and bacteremia. The downregulation of CXCR2 and upregulation of G protein-coupled receptor kinase 2 in neutrophils was prevented by pretreatment of diabetic mice given MS with compound 48/80. In addition, blocking the histamine H2 receptor restored neutrophil migration, enhanced CXCR2 expression, decreased bacteremia, and improved sepsis survival in alloxan-induced diabetic and spontaneous NOD mice. Finally, diabetic W/W(v) mice had neutrophil migration to the peritoneal cavity, increased CXCR2 expression, and reduced bacteremia compared with diabetic WB/B6 mice. These results demonstrate that histamine released by MCs reduces diabetic host resistance to septic peritonitis in mice.


Asunto(s)
Diabetes Mellitus Experimental/mortalidad , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Mastocitos/inmunología , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Aloxano , Animales , Bacteriemia/tratamiento farmacológico , Movimiento Celular , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/microbiología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Histamina/metabolismo , Antagonistas de los Receptores H2 de la Histamina , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Receptores Histamínicos H2/metabolismo , Sepsis/complicaciones , Sepsis/microbiología , Sepsis/mortalidad , Regulación hacia Arriba/efectos de los fármacos , p-Metoxi-N-metilfenetilamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...