Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27636, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509988

RESUMEN

Rationale and objectives: Coronary computed tomography angiography (CCTA) is becoming increasingly important for the diagnostic workup of coronary artery disease, nevertheless, imaging of in-stent stenosis remains challenging. For the first time, spectral imaging in Ultra High Resolution (UHR) is now possible in clinically available photon counting CT. The aim of this work is to determine the optimal virtual monoenergetic image (VMI) for imaging in-stent stenoses in cardiac stents. Materials and methods: 6 stents with inserted hypodense stenoses were scanned in an established phantom in UHR mode. Images were reconstructed with 3 different kernels for spectral data (Qr56, Qr64, Qr72) with varying levels of sharpness. Based on region of interest (ROI) measurements image quality parameters including contrast-to-noise ratio (CNR) were analyzed for all available VMI (40 keV-190 keV). Finally, based on quantitative results and VMI used in clinical routine, a set of VMI was included in a qualitative reading. Results: CNR showed significant variations across different keV levels (p < 0.001). Due to reduced noise there was a focal maximum in the VMI around 65 keV. The peak values were observed for kernel Qr56 at 116 keV with 19.47 ± 8.67, for kernel Qr64 at 114 keV with 13.56 ± 6.58, and for kernel Qr72 at 106 keV with 12.19 ± 3.25. However, in the qualitative evaluation the VMI with lower keV (55 keV) performed best. Conclusions: Based on these experimental results, a photon counting CCTA in UHR with stents should be reconstructed with the Qr72 kernel for the assessment of in-stent stenoses, and a VMI 55 keV should be computed for the evaluation.

2.
Clin Neuroradiol ; 34(1): 75-83, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37589739

RESUMEN

PURPOSE: Nonenhanced computed tomography (CT) of the head is among the most commonly performed CT examinations. The spectral information acquired by photon counting CT (PCCT) allows generation of virtual monoenergetic images (VMI). At the same time, image noise can be reduced using quantum iterative reconstruction (QIR). In this study, the image quality of VMI was evaluated depending on the keV level and the QIR level. Furthermore, the influence of the cranial calvaria was investigated to determine the optimal reconstruction for clinical application. METHODS: A total of 51 PCCT (NAEOTOM Alpha, Siemens Healthineers, Erlangen, Germany) of the head were retrospectively analyzed. In a quantitative analysis, gray and white matter ROIs were evaluated in different brain areas at all available keV levels and QIR levels with respect to signal, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The distance to the cranial calvaria of the ROIs was included in the analysis. This was followed by a qualitative reading by five radiologists including experienced neuroradiologists. RESULTS: In most ROIs, signal and noise varied significantly between keV levels (p < 0.0001). The CNR had a focal maximum at 66 keV and an absolute maximum at higher keV, slightly differently located depending on ROI and QIR level. With increasing QIR level, a significant reduction in noise was achieved (p < 0.0001) except just beneath the cranial calvaria. The cranial calvaria had a strong effect on the signal (p < 0.0001) but not on gray and white matter noise. In the qualitative reading, the 60 keV VMI was rated best. CONCLUSION: In nonenhanced PCCT of the head the selected keV level of the VMI and the QIR level have a crucial influence on image quality in VMI. The 60 keV and 66 keV VMI with high QIR level provided optimal subjective and objective image quality for clinical use. The cranial calvaria has a significant influence on the visualization of the adjacent brain matter; currently, this substantially limits the use of low keV VMIs (< 60 keV).


Asunto(s)
Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Estudios Retrospectivos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Cráneo/diagnóstico por imagen
3.
Acad Radiol ; 31(2): 686-692, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37393176

RESUMEN

RATIONALE AND OBJECTIVES: To evaluate the potential to reduce the amount of iodinated contrast media (CM) for computer tomographic pulmonary angiography (CTPA) with a novel photon-counting-detector CT (PCCT). MATERIALS AND METHODS: Overall, 105 patients referred for CTPA were retrospectively included in this study. CTPA was performed using bolus tracking and high-pitch dual-source scanning (FLASH mode) on a novel PCCT (Naeotom Alpha, Siemens Healthineers). CM (Accupaque 300, GE Healthcare) dose was lowered stepwise following the introduction of the new CT scanner. Thus, patients could be divided into 3 groups as follows: group 1, n = 29, 35 ml of CM; group 2, n = 62, 45 ml of CM and group 3, n = 14, 60 ml of CM. Four readers independently assessed the image quality (Likert-scale 1-5) and adequate assessment of the segmental pulmonary arteries. Additionally, the pulmonary arterial contrast opacification was measured. RESULTS: The subjective image quality was rated highest in group 1 with 4.6 compared to 4.5 (group 2) and 4.1 (group 3) with a significant difference between groups 1 and 3 (p < 0.001) and between groups 2 and 3 (p = 0.003). In all groups, almost all segmental pulmonary arteries could be assessed adequately without significant differences (18.5 vs. 18.7 vs. 18.4). Mean attenuation in the pulmonary trunk did not differ significantly between groups 321 ± 92 HU versus 345 ± 93 HU versus 347 ± 88 HU (p = 0.69). CONCLUSION: Significant CM dose reduction is possible without a reduction in image quality. PCCT enables diagnostic CTPA with 35 ml of CM.


Asunto(s)
Medios de Contraste , Embolia Pulmonar , Humanos , Embolia Pulmonar/diagnóstico por imagen , Estudios Retrospectivos , Arteria Pulmonar/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Angiografía/métodos , Angiografía por Tomografía Computarizada/métodos , Dosis de Radiación
4.
J Stroke Cerebrovasc Dis ; 32(12): 107421, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37826941

RESUMEN

BACKGROUND: Sarcopenia is proposed as a novel imaging biomarker in several acute conditions regarding outcome and mortality. The aim of the present study was to investigate the prognostic role of the masseter muscles in patients with acute ischemic stroke (AIS). METHODS: Overall, 189 patients with AIS that received mechanical thrombectomy were retrospectively enrolled in this study. Outcome and overall survival after 90 days were analyzed. Transversal surface area and density of the masseter muscles were measured. The diagnostic performance for the estimation of a) favorable modified ranking scale 90 days (mRS 90) outcome and b) death at 90 days was calculated using univariate and multivariate logistic regression analysis, followed by receiver operating characteristics and Odds ratios. RESULTS: The masseter muscle area provided a significant difference between patients who survived and those who died and between patients who had a favorable outcome (mRS 90 < 3) and those who did not. The cutoff for a favorable mRS 90 was found to be 435.8 mm2 for men and 338.8 mm2 for women, the cutoff for the prediction of death 421.3 mm2 for men and 326.6 mm2 for women. Masseter muscle area was the third strongest predictor in both categories after patient age and NIHSS. CONCLUSIONS: Masseter muscle area is an independent predictor of mortality in patients with AIS.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Sarcopenia , Accidente Cerebrovascular , Masculino , Humanos , Femenino , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/terapia , Resultado del Tratamiento , Estudios Retrospectivos , Sarcopenia/diagnóstico por imagen , Factores de Riesgo , Trombectomía/métodos
5.
Eur J Radiol ; 167: 111031, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591133

RESUMEN

PURPOSE: Purpose of this study is to re-evaluate the accuracy and diagnostic reliability of virtual non-contrast (VNC) images acquired with the photon-counting computed tomography (PCCT) after an update of the CT scanner software. METHODS: Fifty-four patients were retrospectively enrolled. VNC images were reconstructed from true non-contrast (TNC) images (VNCn) and contrast-enhanced images in portal venous contrast phase (VNCv). Additionally, a liver-specific VNC (VNCl) was assessed. Quantitative image properties of VNC and TNC images were compared and consistency between VNC images was evaluated. Regions of interest were drawn in the liver, spleen, renal cortex, aorta, muscle and subcutaneous fat. RESULTS: Attenuation values on all VNC images differed significantly from TNC images in the liver, renal cortex, aorta and fat. A mean offset of <10HU between TNC and all VNC images was found in the liver, spleen and muscle. The comparison of TNC and VNCl images revealed an offset < 10HU in fat. Differences ≤ 10HU between TNC and VNCv and between TNC and VNCl were found in 68%, respectively in 75%. Differences ≤ 15HU were found in 79%, respectively in 92% of all measurements. Differences ≤ 10HU between TNC and VNCn were found in 79% and differences ≤ 15HU in 85%. CONCLUSION: Although there are statistically significant differences between HU values measured on TNC and VNC images in certain tissues, the minor offsets measured in liver and spleen suggest a good clinical applicability of VNCv and VNCl images. The significantly lower offset in subcutaneous fat on VNCl images suggests a superiority for measurements in adipose tissues.


Asunto(s)
Hígado , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos , Hígado/diagnóstico por imagen , Abdomen
6.
Eur Radiol ; 33(12): 9286-9295, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37436505

RESUMEN

OBJECTIVES: To investigate photon-counting CT (PCCT)-derived virtual monoenergetic images (VMI) for artifact reduction in patients with unilateral total hip replacements (THR). METHODS: Forty-two patients with THR and portal-venous phase PCCT of the abdomen and pelvis were retrospectively included. For the quantitative analysis, region of interest (ROI)-based measurements of hypodense and hyperdense artifacts, as well as of artifact-impaired bone and the urinary bladder, were conducted, and corrected attenuation and image noise were calculated as the difference of attenuation and noise between artifact-impaired and normal tissue. Two radiologists qualitatively evaluated artifact extent, bone assessment, organ assessment, and iliac vessel assessment using 5-point Likert scales. RESULTS: VMI110keV yielded a significant reduction of hypo- and hyperdense artifacts compared to conventional polyenergetic images (CI) and the corrected attenuation closest to 0, indicating best possible artifact reduction (hypodense artifacts: CI: 237.8 ± 71.4 HU, VMI110keV: 8.5 ± 122.5 HU; p < 0.05; hyperdense artifacts: CI: 240.6 ± 40.8 HU vs. VMI110keV: 13.0 ± 110.4 HU; p < 0.05). VMI110keV concordantly provided best artifact reduction in the bone and bladder as well as the lowest corrected image noise. In the qualitative assessment, VMI110keV received the best ratings for artifact extent (CI: 2 (1-3), VMI110keV: 3 (2-4); p < 0.05) and bone assessment (CI: 3 (1-4), VMI110keV: 4 (2-5); p < 0.05), whereas organ and iliac vessel assessments were rated highest in CI and VMI70keV. CONCLUSIONS: PCCT-derived VMI effectively reduce artifacts from THR and thereby improve assessability of circumjacent bone tissue. VMI110keV yielded optimal artifact reduction without overcorrection, yet organ and vessel assessments at that energy level and higher were impaired by loss of contrast. CLINICAL RELEVANCE STATEMENT: PCCT-enabled artifact reduction is a feasible method for improving assessability of the pelvis in patients with total hip replacements at clinical routine imaging. KEY POINTS: • Photon-counting CT-derived virtual monoenergetic images at 110 keV yielded best reduction of hyper- and hypodense artifacts, whereas higher energy levels resulted in artifact overcorrection. • The qualitative artifact extent was reduced best in virtual monoenergetic images at 110 keV, facilitating an improved assessment of the circumjacent bone. • Despite significant artifact reduction, assessment of pelvic organs as well as vessels did not profit from energy levels higher than 70 keV, due to the decline in image contrast.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Humanos , Artefactos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Huesos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
7.
Diagnostics (Basel) ; 13(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766563

RESUMEN

Background: This study evaluated the feasibility of reducing the radiation dose in abdominal imaging of urolithiasis with a clinical photon-counting CT (PCCT) by gradually lowering the image quality level (IQL) without compromising the image quality and diagnostic value. Methods: Ninety-eight PCCT examinations using either IQL70 (n = 31), IQL60 (n = 31) or IQL50 (n = 36) were retrospectively included. Parameters for the radiation dose and the quantitative image quality were analyzed. Qualitative image quality, presence of urolithiasis and diagnostic confidence were rated. Results: Lowering the IQL from 70 to 50 led to a significant decrease (22.8%) in the size-specific dose estimate (SSDE, IQL70 4.57 ± 0.84 mGy, IQL50 3.53 ± 0.70 mGy, p < 0.001). Simultaneously, lowering the IQL led to a minimal deterioration of the quantitative quality, e.g., image noise increased from 9.13 ± 1.99 (IQL70) to 9.91 ± 1.77 (IQL50, p = 0.248). Radiologists did not notice major changes in the image quality throughout the IQLs. Detection rates of urolithiasis (91.3-100%) did not differ markedly. Diagnostic confidence was high and not influenced by the IQL. Conclusions: Adjusting the PCCT scan protocol by lowering the IQL can significantly reduce the radiation dose without significant impairment of the image quality. The detection rate and diagnostic confidence are not impaired by using an ultra-low-dose PCCT scan protocol.

8.
Interv Neuroradiol ; : 15910199221129097, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36147011

RESUMEN

BACKGROUND: The Nimbus stent-retriever (NSR) was developed for mechanical thrombectomy of wall-adherent thrombi in cerebral arteries. It features a novel geometry with a proximal spiral section and a distal barrel section. The new device is designed to retrieve tough clots with a micro-clamping technique. In the first case series reporting on the NSR, we share our initial experience about the first 12 treated cases. METHODS: In total, 12 patients (5 men, 7 women; mean age 78 years) with occlusion of the internal carotid artery or the middle cerebral artery (M1 or M2 segment) were treated with the NSR, 11 after unsuccessful recanalization attempts with conventional stent-retrievers or aspiration thrombectomy. RESULTS: Retrieving maneuvers with the NSR recovered a thrombus in 7 patients (58%), of which 6 resulted in vessel recanalization mTICI ≥ 2b. Successful recanalization improved the mTICI score by a median of 3 points. In 5 of 7 cases, this required only one thrombectomy maneuver. In 5 cases, no improvement of recanalization could be achieved with the NSR (1-3 attempts). No NSR-related complications occurred in this case series. CONCLUSIONS: In our initial experience, the NSR appeared to be a safe and effective second-line stent-retriever after unsuccessful MT with conventional stent-retrievers or aspiration thrombectomy allowing for mTICI ≥ 2b rescue thrombectomy in ab 50% of cases. No NSR associated complications occurred in our case series.

9.
Tomography ; 8(4): 1666-1675, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35894003

RESUMEN

The purpose of this study was the evaluation of image quality and radiation dose parameters of the novel photon counting CT (PCCT, Naeotom Alpha, Siemens Healthineers) using low-dose scan protocols for the detection of urolithiasis. Standard CT scans were used as a reference (S40, Somatom Sensation 40, Siemens Healthineers). Sixty-three patients, who underwent CT scans between August and December 2021, were retrospectively enrolled. Thirty-one patients were examined with the PCCT and 32 patients were examined with the S40. Radiation dose parameters, as well as quantitative and qualitative image parameters, were analyzed. The presence of urolithiasis, image quality, and diagnostic certainty were rated on a 5-point-scale by 3 blinded readers. Both patient groups (PCCT and S40) did not differ significantly in terms of body mass index. Radiation dose was significantly lower for examinations with the PCCT compared to the S40 (2.4 ± 1.0 mSv vs. 3.4 ± 1.0 mSv; p < 0.001). The SNR was significantly better on images acquired with the PCCT (13.3 ± 3.3 vs. 8.2 ± 1.9; p < 0.001). The image quality of the PCCT was rated significantly better (4.3 ± 0.7 vs. 2.8 ± 0.6; p < 0.001). The detection rate of kidney or ureter calculi was excellent with both CT scanners (PCCT 97.8% and S40 99%, p = 0.611). In high contrast imaging, such as the depiction of stones of the kidney and the ureter, PCCT allows a significant reduction of radiation dose, while maintaining excellent diagnostic confidence and image quality. Given this image quality with our current protocol, further adjustments towards ultra-low-dose CT scans appear feasible.


Asunto(s)
Tomografía Computarizada por Rayos X , Urolitiasis , Humanos , Dosis de Radiación , Estudios Retrospectivos , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/métodos , Urolitiasis/diagnóstico por imagen
10.
Diagnostics (Basel) ; 12(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35741116

RESUMEN

BACKGROUND: The purpose of the present study was the evaluation of the image quality of polyenergetic and monoenergetic reconstructions (PERs and MERs) of CT angiographies (CTAs) of the head and neck acquired with the novel photon counting CT (PCCT) method in clinical routine. METHODS: Thirty-seven patients were enrolled in this retrospective study. Quantitative image parameters of the extracranial, intracranial and cerebral arteries were evaluated for the PER and MER (40-120 keV). Additionally, two radiologists rated the perceived image quality. RESULTS: The mean CTDIvol used in the PCCT was 8.31 ± 1.19 mGy. The highest signal within the vessels was detected in the 40 keV MER, whereas the lowest noise was detected in the 115 keV MER. The most favorable contrast-to-noise-ratio (CNR) and signal-to-noise-ratio (SNR) were detected in the PER and low keV MER. In the qualitative image analysis, the PER was superior to the MER in all rated criteria. For MER, 60-65 keV was rated as best image quality. CONCLUSION: Overall, PCCT offers excellent image quality for CTAs of the head and neck. At the current state, the PER of the PCCT seems to be the most favorable reconstruction for diagnostic reporting.

11.
Diagnostics (Basel) ; 12(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204356

RESUMEN

In 2021, the first clinical photon-counting CT (PCCT) was introduced. The purpose of this study is to evaluate the image quality of polyenergetic and virtual monoenergetic reconstructions in unenhanced PCCTs of the head. A total of 49 consecutive patients with unenhanced PCCTs of the head were retrospectively included. The signals ± standard deviations of the gray and white matter were measured at three different locations in axial slices, and a measure of the artifacts below the cranial calvaria and in the posterior fossa between the petrous bones was also obtained. The signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were calculated for all reconstructions. In terms of the SNRs and CNRs, the polyenergetic reconstruction is superior to all virtual monoenergetic reconstructions (p < 0.001). In the MERs, the highest SNR is found in the 70 keV MER, and the highest CNR is in the 65 keV MER. In terms of artifacts below the cranial calvaria and in the posterior fossa, certain MERs are superior to polyenergetic reconstruction (p < 0.001). The PCCT provided excellent image contrast and low-noise profiles for the differentiation of the grey and white matter. Only the artifacts below the calvarium and in the posterior fossa still underperform, which is attributable to the lack of an artifact reduction algorithm in image postprocessing. It is conceivable that the usual improvements in image postprocessing, especially with regard to glaring artifacts, will lead to further improvements in image quality.

12.
Eur J Radiol ; 149: 110185, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35149338

RESUMEN

PURPOSE: The present study evaluates the diagnostic accuracy of virtual non-contrast (VNC) images acquired with the first clinical photon counting CT scanner for the assessment of hepatic steatosis. METHOD: 140 patients were retrospectively enrolled in this study. The following CT indices were calculated according to the attenuation on VNC and true non-contrast (TNC) images: Liver attenuation CT (L), difference between liver and spleen attenuation CT (L-S) and the ratio between liver and spleen attenuation CT (L/S). RESULTS: Considering previously reported cut-off values, the sensitivity, specificity, positive and negative predictive value (PPV, NPV) for the detection of hepatic steatosis on VNC images was 94%, 87%, 30% and 99.5% for CT (L), 52%, 99%, 81% and 96% for CT (L-S) and 67%, 98%, 74% and 94% for CT (L/S). When adjusting the cut-off values according to the present study, the sensitivity, specificity, PPV and NPV for the detection of hepatic steatosis on VNC images was 94%, 92%, 41% and 99.6% for CT (L), 96%, 90%, 46% and 99.6% for CT (L-S) and 95%, 99.6%, 42% and 99.6% for CT (L/S). CONCLUSIONS: In conclusion, the spectral datasets acquired with the first clinical PCCT scanner enable the reconstruction of VNC images that are reliable for the image-based assessment of hepatic steatosis. By adjusting the cut-off values all tested CT indices perform well and offer an excellent sensitivity as well as specificity.


Asunto(s)
Hígado Graso , Tomografía Computarizada por Rayos X , Abdomen , Hígado Graso/diagnóstico por imagen , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...