Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Biosci ; 13(1): 89, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202777

RESUMEN

BACKGROUND: Tumor hypoxia stimulates release of extracellular vesicles (EVs) that facilitate short- and long-range intercellular communication and metastatization. Albeit hypoxia and EVs release are known features of Neuroblastoma (NB), a metastasis-prone childhood malignancy of the sympathetic nervous system, whether hypoxic EVs can facilitate NB dissemination is unclear. METHODS: Here we isolated and characterized EVs from normoxic and hypoxic NB cell culture supernatants and performed microRNA (miRNA) cargo analysis to identify key mediators of EVs biological effects. We then validated if EVs promote pro-metastatic features both in vitro and in an in vivo zebrafish model. RESULTS: EVs from NB cells cultured at different oxygen tensions did not differ for type and abundance of surface markers nor for biophysical properties. However, EVs derived from hypoxic NB cells (hEVs) were more potent than their normoxic counterpart in inducing NB cells migration and colony formation. miR-210-3p was the most abundant miRNA in the cargo of hEVs; mechanistically, overexpression of miR-210-3p in normoxic EVs conferred them pro-metastatic features, whereas miR-210-3p silencing suppressed the metastatic ability of hypoxic EVs both in vitro and in vivo. CONCLUSION: Our data identify a role for hypoxic EVs and their miR-210-3p cargo enrichment in the cellular and microenvironmental changes favoring NB dissemination.

3.
Polymers (Basel) ; 15(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36850103

RESUMEN

Right ventricle outflow tract obstruction (RVOTO) is a congenital pathological condition that contributes to about 15% of congenital heart diseases. In most cases, the replacement of the right ventricle outflow in pediatric age requires subsequent pulmonary valve replacement in adulthood. The aim of this study was to investigate the extracellular matrix scaffold obtained by decellularization of the porcine pulmonary valve using a new detergent (Tergitol) instead of Triton X-100. The decellularized scaffold was evaluated for the integrity of its extracellular matrix (ECM) structure by testing for its biochemical and mechanical properties, and the cytotoxicity/cytocompatibility of decellularized tissue was assessed using bone marrow-derived mesenchymal stem cells. We concluded that Tergitol could remove the nuclear material efficiently while preserving the structural proteins of the matrix, but without an efficient removal of the alpha-gal antigenic epitope. Therefore, Tergitol can be used as an alternative detergent to replace the Triton X-100.

4.
Biomimetics (Basel) ; 7(3)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997424

RESUMEN

Human and animal pericardia are among the most widely exploited materials suitable to repair damaged tissues in the cardiovascular surgery context. Autologous, xenogeneic (chemically treated) and homologous pericardia are largely utilized, but they do exhibit some crucial drawbacks. Any tissue treated with glutaraldehyde is known to be prone to calcification in vivo, lacks regeneration potential, has limited durability, and can result in cytotoxicity. Moreover, autologous tissues have limited availability. Decellularized biological tissues represent a promising alternative: decellularization removes cellular and nuclear components from native tissues and makes them suitable for repopulation by autologous cells upon implantation into the body. The present work aims to assess the effects of a new detergent, i.e., Tergitol, for decellularizing bovine and porcine pericardia. The decellularization procedure successfully removed cells, while preserving the histoarchitecture of the extracellular matrix. No cytotoxic effect was observed. Therefore, decellularized pericardia showed potential to be used as scaffold for cardiovascular tissue regeneration.

5.
NPJ Regen Med ; 7(1): 25, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468920

RESUMEN

The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects.

6.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269969

RESUMEN

Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients' quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients' quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Animales , ADN , Humanos , Mucosa Intestinal , Intestino Delgado , Calidad de Vida , Porcinos , Ingeniería de Tejidos/métodos , Neoplasias de la Vejiga Urinaria/cirugía
7.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35335556

RESUMEN

The most common aortic valve diseases in adults are stenosis due to calcification and regurgitation. In pediatric patients, aortic pathologies are less common. When a native valve is surgically replaced by a prosthetic one, it is necessary to consider that the latter has a limited durability. In particular, current bioprosthetic valves have to be replaced after approximately 10 years; mechanical prostheses are more durable but require the administration of permanent anticoagulant therapy. With regard to pediatric patients, both mechanical and biological prosthetic valves have to be replaced due to their inability to follow patients' growth. An alternative surgical substitute can be represented by the acellular porcine aortic valve that exhibits less immunogenic risk and a longer lifespan. In the present study, an efficient protocol for the removal of cells by using detergents, enzyme inhibitors, and hyper- and hypotonic shocks is reported. A new detergent (Tergitol) was applied to replace TX-100 with the aim to reduce toxicity and maximize ECM preservation. The structural integrity and efficient removal of cells and nuclear components were assessed by means of histology, immunofluorescence, and protein quantification; biomechanical properties were also checked by tensile tests. After decellularization, the acellular scaffold was sterilized with a standard protocol and repopulated with bone marrow mesenchymal stem cells to analyze its biocompatibility profile.

8.
J Clin Med ; 10(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206855

RESUMEN

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is a familial stress-induced arrhythmia syndrome, mostly caused by mutations in Ryanodine receptor 2 (RyR2), the sarcoplasmic reticulum (SR) Ca2+ release channel in cardiomyocytes. Pathogenetic mutations lead to gain of function in the channel, causing arrhythmias by promoting diastolic spontaneous Ca2+ release (SCR) from the SR and delayed afterdepolarizations. While the study of Ca2+ dynamics in single cells from murine CPVT models has increased our understanding of the disease pathogenesis, questions remain on the mechanisms triggering the lethal arrhythmias at tissue level. Here, we combined subcellular analysis of Ca2+ signals in isolated cardiomyocytes and in acute thick ventricular slices of RyR2R2474S knock-in mice, electrically paced at different rates (1-5 Hz), to identify arrhythmogenic Ca2+ dynamics, from the sub- to the multicellular perspective. In both models, RyR2R2474S cardiomyocytes had increased propensity to develop SCR upon adrenergic stimulation, which manifested, in the slices, with Ca2+ alternans and synchronous Ca2+ release events in neighboring cardiomyocytes. Analysis of Ca2+ dynamics in multiple cells in the tissue suggests that SCRs beget SCRs in contiguous cells, overcoming the protective electrotonic myocardial coupling, and potentially generating arrhythmia triggering foci. We suggest that intercellular interactions may underscore arrhythmic propensity in CPVT hearts with 'leaky' RyR2.

9.
Front Physiol ; 12: 645723, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935801

RESUMEN

Adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) are known to be involved in the physiological response to hypoxia, and their expression/activity may be modulated by chronic sustained or intermittent hypoxia. To date, A2AR and D2R can form transient physical receptor-receptor interactions (RRIs) giving rise to a dynamic equilibrium able to influence ligand binding and signaling, as demonstrated in different native tissues and transfected mammalian cell systems. Given the presence of A2AR and D2R in type I cells, type II cells, and afferent nerve terminals of the carotid body (CB), the aim of this work was to demonstrate here, for the first time, the existence of A2AR-D2R heterodimers by in situ proximity ligation assay (PLA). Our data by PLA analysis and tyrosine hydroxylase/S100 colocalization indicated the formation of A2AR-D2R heterodimers in type I and II cells of the CB; the presence of A2AR-D2R heterodimers also in afferent terminals is also suggested by PLA signal distribution. RRIs could play a role in CB dynamic modifications and plasticity in response to development/aging and environmental stimuli, including chronic intermittent/sustained hypoxia. Exploring other RRIs will allow for a broad comprehension of the regulative mechanisms these interactions preside over, with also possible clinical implications.

10.
Front Med (Lausanne) ; 8: 661403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041253

RESUMEN

The infrapatellar fat pad (IFP) is actively involved in knee osteoarthritis (OA). However, a proper description of which developmental modifications occur in the IFP along with age and in absence of joint pathological conditions, is required to adequately describe its actual contribution in OA pathophysiology. Here, two IFP sources were compared: (a) IFP from healthy young patients undergoing anterior-cruciate ligament (ACL) reconstruction for ACL rupture (n = 24); (b) IFP from elderly cadaver donors (n = 23). After histopathological score assignment to confirm the absence of inflammatory features (i.e., inflammatory infiltrate and increased vascularity), the adipocytes morphology was determined; moreover, extracellular matrix proteins were studied through histology and Second Harmonic Generation approach, to determine collagens content and orientation by Fast Fourier Transform and OrientationJ. The two groups were matched for body mass index. No inflammatory signs were observed, while higher area, perimeter, and equivalent diameter and volume were detected for the adipocytes in the elderly group. Collagen III displayed higher values in the young group and a lower total collagen deposition with aging was identified. However, collagen I/III ratio and the global architecture of the samples were not affected. A higher content in elastic fibers was observed around the adipocytes for the ACL-IFPs and in the septa cadaver donor-IFPs, respectively. Age affects the characteristics of the IFP tissue also in absence of a pathological condition. Variable mechanical stimulation, depending on age-related different mobility, could be speculated to exert a role in tissue remodeling.

11.
Blood ; 138(7): 557-570, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34010415

RESUMEN

Bone marrow (BM) microenvironment contributes to the regulation of normal hematopoiesis through a finely tuned balance of self-renewal and differentiation processes, cell-cell interaction, and secretion of cytokines that during leukemogenesis are altered and favor tumor cell growth. In pediatric acute myeloid leukemia (AML), chemotherapy is the standard of care, but >30% of patients still relapse. The need to accelerate the evaluation of innovative medicines prompted us to investigate the role of mesenchymal stromal cells (MSCs) in the leukemic niche to define its contribution to the mechanism of leukemia drug escape. We generated a humanized 3-dimensional (3D) niche with AML cells and MSCs derived from either patients (AML-MSCs) or healthy donors. We observed that AML cells establish physical connections with MSCs, mediating a reprogrammed transcriptome inducing aberrant cell proliferation and differentiation and severely compromising their immunomodulatory capability. We confirmed that AML cells modulate h-MSCs transcriptional profile promoting functions similar to the AML-MSCs when cocultured in vitro, thus facilitating leukemia progression. Conversely, MSCs derived from BM of patients at time of disease remission showed recovered healthy features at transcriptional and functional levels, including the secretome. We proved that AML blasts alter MSCs activities in the BM niche, favoring disease development and progression. We discovered that a novel AML-MSC selective CaV1.2 channel blocker drug, lercanidipine, is able to impair leukemia progression in 3D both in vitro and when implanted in vivo if used in combination with chemotherapy, supporting the hypothesis that synergistic effects can be obtained by dual targeting approaches.


Asunto(s)
Proliferación Celular , Leucemia Mieloide Aguda/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transcriptoma , Canales de Calcio Tipo L/metabolismo , Dihidropiridinas/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Células Madre Mesenquimatosas/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral
12.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800802

RESUMEN

Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. Afterwards, we provide a detailed review analysis of the main quantitative methods to extract important information and parameters from acquired images using second harmonic generation. Lastly, we discuss advantages, limitations, and future perspectives in label-free multiphoton microscopy.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Absorción de Radiación , Anisotropía , Análisis de Fourier , Microscopía de Polarización/métodos , Microtomía/métodos , Imagen Óptica/métodos , Fotoblanqueo , Fotones , Microscopía de Generación del Segundo Armónico/métodos , Manejo de Especímenes/métodos , Fijación del Tejido/métodos , Análisis de Ondículas
13.
ACS Biomater Sci Eng ; 6(10): 5493-5506, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320567

RESUMEN

Heart failure is the worst outcome of all cardiovascular diseases and still represents nowadays the leading cause of mortality with no effective clinical treatments, apart from organ transplantation with allogeneic or artificial substitutes. Although applied as the gold standard, allogeneic heart transplantation cannot be considered a permanent clinical answer because of several drawbacks, as the side effects of administered immunosuppressive therapies. For the increasing number of heart failure patients, a biological cardiac substitute based on a decellularized organ and autologous cells might be the lifelong, biocompatible solution free from the need for immunosuppression regimen. A novel decellularization method is here proposed and tested on rat hearts in order to reduce the concentration and incubation time with cytotoxic detergents needed to render acellular these organs. By protease inhibition, antioxidation, and excitation-contraction uncoupling in simultaneous perfusion/submersion modality, a strongly limited exposure to detergents was sufficient to generate very well-preserved acellular hearts with unaltered extracellular matrix macro- and microarchitecture, as well as bioactivity.


Asunto(s)
Detergentes , Andamios del Tejido , Matriz Extracelular , Corazón , Humanos , Perfusión
14.
Blood Adv ; 4(18): 4417-4429, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32931582

RESUMEN

In pediatric acute myeloid leukemia (AML), intensive chemotherapy and allogeneic hematopoietic stem cell transplantation are the cornerstones of treatment in high-risk cases, with severe late effects and a still high risk of disease recurrence as the main drawbacks. The identification of targeted, more effective, safer drugs is thus desirable. We performed a high-throughput drug-screening assay of 1280 compounds and identified thioridazine (TDZ), a drug that was highly selective for the t(6;11)(q27;q23) MLL-AF6 (6;11)AML rearrangement, which mediates a dramatically poor (below 20%) survival rate. TDZ induced cell death and irreversible progress toward the loss of leukemia cell clonogenic capacity in vitro. Thus, we explored its mechanism of action and found a profound cytoskeletal remodeling of blast cells that led to Ca2+ influx, triggering apoptosis through mitochondrial depolarization, confirming that this latter phenomenon occurs selectively in t(6;11)AML, for which AF6 does not work as a cytoskeletal regulator, because it is sequestered into the nucleus by the fusion gene. We confirmed TDZ-mediated t(6;11)AML toxicity in vivo and enhanced the drug's safety by developing novel TDZ analogues that exerted the same effect on leukemia reduction, but with lowered neuroleptic effects in vivo. Overall, these results refine the MLL-AF6 AML leukemogenic mechanism and suggest that the benefits of targeting it be corroborated in further clinical trials.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Calcio , Muerte Celular , Niño , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Tioridazina , Translocación Genética
15.
Cancer Discov ; 10(11): 1758-1773, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32651166

RESUMEN

Tumor-associated macrophages (TAM) are regulators of extracellular matrix (ECM) remodeling and metastatic progression, the main cause of cancer-associated death. We found that disabled homolog 2 mitogen-responsive phosphoprotein (DAB2) is highly expressed in tumor-infiltrating TAMs and that its genetic ablation significantly impairs lung metastasis formation. DAB2-expressing TAMs, mainly localized along the tumor-invasive front, participate in integrin recycling, ECM remodeling, and directional migration in a tridimensional matrix. DAB2+ macrophages escort the invasive dissemination of cancer cells by a mechanosensing pathway requiring the transcription factor YAP. In human lobular breast and gastric carcinomas, DAB2+ TAMs correlated with a poor clinical outcome, identifying DAB2 as potential prognostic biomarker for stratification of patients with cancer. DAB2 is therefore central for the prometastatic activity of TAMs. SIGNIFICANCE: DAB2 expression in macrophages is essential for metastasis formation but not primary tumor growth. Mechanosensing cues, activating the complex YAP-TAZ, regulate DAB2 in macrophages, which in turn controls integrin recycling and ECM remodeling in 3-D tissue matrix. The presence of DAB2+ TAMs in patients with cancer correlates with worse prognosis.This article is highlighted in the In This Issue feature, p. 1611.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Neoplasias/genética , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Humanos
16.
Front Neurol ; 11: 341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477241

RESUMEN

A cochlear implant (CI) is an electronic device that enables hearing recovery in patients with severe to profound hearing loss. Although CIs are a successful treatment for profound hearing impairment, their effectivity may be improved by reducing damages associated with insertion of electrodes in the cochlea, thus preserving residual hearing ability. Inner ear trauma leads to inflammatory reactions altering cochlear homeostasis and reducing post-operative audiological performances and electroacoustic stimulation. Strategies to preserve residual hearing ability led to the development of medicated devices to minimize CI-induced cochlear injury. Dexamethasone-eluting electrodes recently showed positive outcomes. In previous studies by our research group, intratympanic release of dexamethasone for 14 days was able to preserve residual hearing from CI insertion trauma in a Guinea pig model. Long-term effects of dexamethasone-eluting electrodes were therefore evaluated in the same animal model. Seven Guinea pigs were bilaterally implanted with medicated rods and four were implanted with non-eluting ones. Hearing threshold audiograms were acquired prior to implantation and up to 60 days by recording compound action potentials. For each sample, we examined the amount of bone and fibrous connective tissue grown within the scala tympani in the basal turn of the cochlea, the cochleostomy healing, the neuronal density, and the correlation between electrophysiological parameters and histological results. Detection of tumor necrosis factor alpha, interleukin-6, and foreign body giant cells showed that long-term electrode implantation was not associated with an ongoing inflammation. Growth of bone and fibrous connective tissue around rods induced by CI was reduced in the scala tympani by dexamethasone release. For cochleostomy sealing, dexamethasone-treated animals showed less bone tissue growth than negative. Dexamethasone did not affect cell density in the spiral ganglion. Overall, these results support the use of dexamethasone as anti-inflammatory additive for eluting electrodes able to protect the cochlea from CI insertion trauma.

17.
J Extracell Vesicles ; 9(1): 1757900, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32489531

RESUMEN

Pathological angiogenesis is a hallmark of several conditions including eye diseases, inflammatory diseases, and cancer. Stromal cells play a crucial role in regulating angiogenesis through the release of soluble factors or direct contact with endothelial cells. Here, we analysed the properties of the extracellular vesicles (EVs) released by bone marrow mesenchymal stromal cells (MSCs) and explored the possibility of using them to therapeutically target angiogenesis. We demonstrated that in response to pro-inflammatory cytokines, MSCs produce EVs that are enriched in TIMP-1, CD39 and CD73 and inhibit angiogenesis targeting both extracellular matrix remodelling and endothelial cell migration. We identified a novel anti-angiogenic mechanism based on adenosine production, triggering of A2B adenosine receptors, and induction of NOX2-dependent oxidative stress within endothelial cells. Finally, in pilot experiments, we exploited the anti-angiogenic EVs to inhibit tumour progression in vivo. Our results identify novel pathways involved in the crosstalk between endothelial and stromal cell and suggest new therapeutic strategies to target pathological angiogenesis.

18.
Biomolecules ; 10(3)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121155

RESUMEN

Xenogeneic pericardium-based substitutes are employed for several surgical indications after chemical shielding, limiting their biocompatibility and therapeutic durability. Adverse responses to these replacements might be prevented by tissue decellularization, ideally removing cells and preserving the original extracellular matrix (ECM). The aim of this study was to compare the mostly applied pericardia in clinics, i.e. bovine and porcine tissues, after their decellularization, and obtain new insights for their possible surgical use. Bovine and porcine pericardia were submitted to TRICOL decellularization, based on osmotic shock, detergents and nuclease treatment. TRICOL procedure resulted in being effective in cell removal and preservation of ECM architecture of both species' scaffolds. Collagen and elastin were retained but glycosaminoglycans were reduced, significantly for bovine scaffolds. Tissue hydration was varied by decellularization, with a rise for bovine pericardia and a decrease for porcine ones. TRICOL significantly increased porcine pericardial thickness, while a non-significant reduction was observed for the bovine counterpart. The protein secondary structure and thermal denaturation profile of both species' scaffolds were unaltered. Both pericardial tissues showed augmented biomechanical compliance after decellularization. The ECM bioactivity of bovine and porcine pericardia was unaffected by decellularization, sustaining viability and proliferation of human mesenchymal stem cells and endothelial cells. In conclusion, decellularized bovine and porcine pericardia demonstrate possessing the characteristics that are suitable for the creation of novel scaffolds for reconstruction or replacement: differences in water content, thickness and glycosaminoglycans might influence some of their biomechanical properties and, hence, their indication for surgical use.


Asunto(s)
Matriz Extracelular/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ensayo de Materiales , Pericardio/química , Animales , Bovinos , Colágeno/química , Elastina/química , Humanos , Pericardio/cirugía , Especificidad de la Especie , Porcinos
19.
Biophys Chem ; 254: 106262, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514114

RESUMEN

The application of nanotechnologies to address biomedical questions is a key strategy for innovation in biomedical research. Among others, a key point consists in the availability of nanotechnologies for monitoring cellular processes in a real-time and label-free approach. Here, we focused on a grating-coupled Surface Plasmon Resonance (GC-SPR) sensor exploiting phase interrogation. This sensor can be integrated in a microfluidic chamber that ensures cell viability and avoids cell stress. We report the calibration of the sensor response as a function of cell number and its application to monitor cell adhesion kinetics as well as cell response to an external stimulus. Our results show that GC-SPR sensors can offer a valuable alternative to prism-coupled or imaging SPR devices, amenable for microfluidic implementation.


Asunto(s)
Dispositivos Laboratorio en un Chip , Resonancia por Plasmón de Superficie/métodos , Adhesión Celular , Línea Celular Tumoral , Supervivencia Celular , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica , Nanoestructuras/química
20.
Sensors (Basel) ; 18(5)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783711

RESUMEN

Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...