Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 10: 1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30728774

RESUMEN

Despite the significant achievements in chemotherapy, cancer remains one of the leading causes of death. Target therapy revolutionized this field, but efficiencies of target drugs show dramatic variation among individual patients. Personalization of target therapies remains, therefore, a challenge in oncology. Here, we proposed molecular pathway-based algorithm for scoring of target drugs using high throughput mutation data to personalize their clinical efficacies. This algorithm was validated on 3,800 exome mutation profiles from The Cancer Genome Atlas (TCGA) project for 128 target drugs. The output values termed Mutational Drug Scores (MDS) showed positive correlation with the published drug efficiencies in clinical trials. We also used MDS approach to simulate all known protein coding genes as the putative drug targets. The model used was built on the basis of 18,273 mutation profiles from COSMIC database for eight cancer types. We found that the MDS algorithm-predicted hits frequently coincide with those already used as targets of the existing cancer drugs, but several novel candidates can be considered promising for further developments. Our results evidence that the MDS is applicable to ranking of anticancer drugs and can be applied for the identification of novel molecular targets.

2.
Front Oncol ; 8: 658, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662873

RESUMEN

DNA mutations play a crucial role in cancer development and progression. Mutation profiles vary dramatically in different cancer types and between individual tumors. Mutations of several individual genes are known as reliable cancer biomarkers, although the number of such genes is tiny and does not enable differential diagnostics for most of the cancers. We report here a technique enabling dramatically increased efficiency of cancer biomarkers development using DNA mutations data. It includes a quantitative metric termed Pathway instability (PI) based on mutations enrichment of intracellular molecular pathways. This method was tested on 5,956 tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project. Totally, we screened 2,316,670 mutations in 19,872 genes and 1,748 molecular pathways. Our results demonstrated considerable advantage of pathway-based mutation biomarkers over individual gene mutation profiles, as reflected by more than two orders of magnitude greater numbers by high-quality [ROC area-under-curve (AUC)>0.75] biomarkers. For example, the number of such high-quality mutational biomarkers distinguishing between different cancer types was only six for the individual gene mutations, and already 660 for the pathway-based biomarkers. These results evidence that PI value can be used as a new generation of complex cancer biomarkers significantly outperforming the existing gene mutation biomarkers.

3.
Methods Mol Biol ; 1613: 31-51, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849557

RESUMEN

Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members. For example, our algorithm OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data in the objects of the interest.Yet, the question of assessment of the relative importance for each gene product in a molecular pathway remains unclear unless one call for the methods of parameter sensitivity /stiffness analysis in the interactomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.Here we show two principal points: 1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time- and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS is kinetically justified. 2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large numbers, allows restoring the correlation between the similar samples that were examined using different transcriptome investigation techniques.


Asunto(s)
Expresión Génica , Redes Reguladoras de Genes , Algoritmos , Perfilación de la Expresión Génica , Humanos , Modelos Teóricos , Mapas de Interacción de Proteínas , Transducción de Señal
4.
Methods Mol Biol ; 1613: 53-83, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849558

RESUMEN

We propose a biomathematical approach termed OncoFinder (OF) that enables performing both quantitative and qualitative analyses of the intracellular molecular pathway activation. OF utilizes an algorithm that distinguishes the activator/repressor role of every gene product in a pathway. This method is applicable for the analysis of any physiological, stress, malignancy, and other conditions at the molecular level. OF showed a strong potential to neutralize background-caused differences between experimental gene expression data obtained using NGS, microarray and modern proteomics techniques. Importantly, in most cases, pathway activation signatures were better markers of cancer progression compared to the individual gene products. OF also enables correlating pathway activation with the success of anticancer therapy for individual patients. We further expanded this approach to analyze impact of micro RNAs (miRs) on the regulation of cellular interactome. Many alternative sources provide information about miRs and their targets. However, instruments elucidating higher level impact of the established total miR profiles are still largely missing. A variant of OncoFinder termed MiRImpact enables linking miR expression data with its estimated outcome on the regulation of molecular processes, such as signaling, metabolic, cytoskeleton, and DNA repair pathways. MiRImpact was used to establish cancer-specific and cytomegaloviral infection-linked interactomic signatures for hundreds of molecular pathways. Interestingly, the impact of miRs appeared orthogonal to pathway regulation at the mRNA level, which stresses the importance of combining all available levels of gene regulation to build a more objective molecular model of cell.


Asunto(s)
Biología Computacional/métodos , Infecciones por Citomegalovirus/genética , MicroARNs/genética , Neoplasias/genética , Algoritmos , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos
5.
Cell Cycle ; 15(5): 689-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27027999

RESUMEN

MicroRNAs (miRs) are short noncoding RNA molecules that regulate expression of target mRNAs. Many published sources provide information about miRs and their targets. However, bioinformatic tools elucidating higher level impact of the established total miR profiles, are still largely missing. Recently, we developed a method termed OncoFinder enabling quantification of the activities of intracellular molecular pathways basing on gene expression data. Here we propose a new technique, MiRImpact, which enables to link miR expression data with its estimated outcome on the regulation of molecular pathways, like signaling, metabolic, cytoskeleton rearrangement, and DNA repair pathways. MiRImpact uses OncoFinder rationale for pathway activity calculations, with the major distinctions that (i) it deals with the concentrations of miRs--known regulators of gene products participating in molecular pathways, and (ii) miRs are considered as negative regulators of target molecules, if other is not specified. MiRImpact operates with 2 types of databases: for molecular targets of miRs and for gene products participating in molecular pathways. We applied MiRImpact to compare regulation of human bladder cancer-specific signaling pathways at the levels of mRNA and miR expression. We took 2 most complete alternative databases of experimentally validated miR targets--miRTarBase and DianaTarBase, and an OncoFinder database featuring 2725 gene products and 271 signaling pathways. We showed that the impact of miRs is orthogonal to pathway regulation at the mRNA level, which stresses the importance of studying posttranscriptional regulation of gene expression. We also report characteristic set of miR and mRNA regulation features linked with bladder cancer.


Asunto(s)
MicroARNs/fisiología , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Interferencia de ARN , Transducción de Señal , Transcriptoma , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
6.
Cell Cycle ; 15(24): 3378-3389, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-28051642

RESUMEN

Responses to human cytomegalovirus (HCMV) infection are largely individual and cell type specific. We investigated molecular profiles in 2 primary cell cultures of human fibroblasts, which are highly or marginally sensitive to HCMV infection, respectively. We screened expression of genes and microRNAs (miRs) at the early (3 hours) stage of infection. To assess molecular pathway activation profiles, we applied bioinformatic algorithms OncoFinder and MiRImpact. In both cell types, pathway regulation properties at mRNA and miR levels were markedly different. Surprisingly, in the infected highly sensitive cells, we observed a "freeze" of miR expression profiles compared to uninfected controls. Our results evidence that in the sensitive cells, HCMV blocks intracellular regulation of microRNA expression already at the earliest stage of infection. These data suggest somewhat new functions for HCMV products and demonstrate dependence of miR expression arrest on the host-encoded factors.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica , MicroARNs/genética , Adulto , Línea Celular , Fibroblastos/patología , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/genética , Proteínas Virales/metabolismo
7.
Oncotarget ; 5(20): 10198-205, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25415353

RESUMEN

Identification of reliable and accurate molecular markers remains one of the major challenges of contemporary biomedicine. We developed a new bioinformatic technique termed OncoFinder that for the first time enables to quantatively measure activation of intracellular signaling pathways basing on transcriptomic data. Signaling pathways regulate all major cellular events in health and disease. Here, we showed that the Pathway Activation Strength (PAS) value itself may serve as the biomarker for cancer, and compared it with the "traditional" molecular markers based on the expression of individual genes. We applied OncoFinder to profile gene expression datasets for the nine human cancer types including bladder cancer, basal cell carcinoma, glioblastoma, hepatocellular carcinoma, lung adenocarcinoma, oral tongue squamous cell carcinoma, primary melanoma, prostate cancer and renal cancer, totally 292 cancer and 128 normal tissue samples taken from the Gene expression omnibus (GEO) repository. We profiled activation of 82 signaling pathways that involve ~2700 gene products. For 9/9 of the cancer types tested, the PAS values showed better area-under-the-curve (AUC) scores compared to the individual genes enclosing each of the pathways. These results evidence that the PAS values can be used as a new type of cancer biomarkers, superior to the traditional gene expression biomarkers.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal
8.
Oncotarget ; 5(19): 9022-32, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25296972

RESUMEN

We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression in 17 cancer and seven non-cancerous bladder tissue samples. These experiments were done in two independent laboratories located in Russia and Canada. We calculated pathway activation strength values for the investigated transcriptomes and identified signaling pathways that were regulated differently in bladder cancer (BC) tissues compared with normal controls. We found, for both experimental datasets, 44 signaling pathways that serve as excellent new biomarkers of BC, supported by high area under the curve (AUC) values. We conclude that the OncoFinder approach is highly efficient in finding new biomarkers for cancer. These markers are mathematical functions involving multiple gene products, which distinguishes them from "traditional" expression biomarkers that only assess concentrations of single genes.


Asunto(s)
Biomarcadores de Tumor/genética , Biología Computacional/métodos , Transducción de Señal/genética , Transcriptoma/genética , Neoplasias de la Vejiga Urinaria/genética , Algoritmos , Expresión Génica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Vejiga Urinaria/citología
9.
Front Genet ; 5: 55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24723936

RESUMEN

We propose a new biomathematical method, OncoFinder, for both quantitative and qualitative analysis of the intracellular signaling pathway activation (SPA). This method is universal and may be used for the analysis of any physiological, stress, malignancy and other perturbed conditions at the molecular level. In contrast to the other existing techniques for aggregation and generalization of the gene expression data for individual samples, we suggest to distinguish the positive/activator and negative/repressor role of every gene product in each pathway. We show that the relative importance of each gene product in a pathway can be assessed using kinetic models for "low-level" protein interactions. Although the importance factors for the pathway members cannot be so far established for most of the signaling pathways due to the lack of the required experimental data, we showed that ignoring these factors can be sometimes acceptable and that the simplified formula for SPA evaluation may be applied for many cases. We hope that due to its universal applicability, the method OncoFinder will be widely used by the researcher community.

10.
Front Genet ; 5: 49, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24624136

RESUMEN

The major challenges of aging research include absence of the comprehensive set of aging biomarkers, the time it takes to evaluate the effects of various interventions on longevity in humans and the difficulty extrapolating the results from model organisms to humans. To address these challenges we propose the in silico method for screening and ranking the possible geroprotectors followed by the high-throughput in vivo and in vitro validation. The proposed method evaluates the changes in the collection of activated or suppressed signaling pathways involved in aging and longevity, termed signaling pathway cloud, constructed using the gene expression data and epigenetic profiles of young and old patients' tissues. The possible interventions are selected and rated according to their ability to regulate age-related changes and minimize differences in the signaling pathway cloud. While many algorithmic solutions to simulating the induction of the old into young metabolic profiles in silico are possible, this flexible and scalable approach may potentially be used to predict the efficacy of the many drugs that may extend human longevity before conducting pre-clinical work and expensive clinical trials.

11.
Front Mol Biosci ; 1: 8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25988149

RESUMEN

The diversity of the installed sequencing and microarray equipment make it increasingly difficult to compare and analyze the gene expression datasets obtained using the different methods. Many applications requiring high-quality and low error rates cannot make use of available data using traditional analytical approaches. Recently, we proposed a new concept of signalome-wide analysis of functional changes in the intracellular pathways termed OncoFinder, a bioinformatic tool for quantitative estimation of the signaling pathway activation (SPA). We also developed methods to compare the gene expression data obtained using multiple platforms and minimizing the error rates by mapping the gene expression data onto the known and custom signaling pathways. This technique for the first time makes it possible to analyze the functional features of intracellular regulation on a mathematical basis. In this study we show that the OncoFinder method significantly reduces the errors introduced by transcriptome-wide experimental techniques. We compared the gene expression data for the same biological samples obtained by both the next generation sequencing (NGS) and microarray methods. For these different techniques we demonstrate that there is virtually no correlation between the gene expression values for all datasets analyzed (R (2) < 0.1). In contrast, when the OncoFinder algorithm is applied to the data we observed clear-cut correlations between the NGS and microarray gene expression datasets. The SPA profiles obtained using NGS and microarray techniques were almost identical for the same biological samples allowing for the platform-agnostic analytical applications. We conclude that this feature of the OncoFinder enables to characterize the functional states of the transcriptomes and interactomes more accurately as before, which makes OncoFinder a method of choice for many applications including genetics, physiology, biomedicine, and molecular diagnostics.

12.
J Biol Chem ; 281(29): 19925-38, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16687399

RESUMEN

Grb2-associated binder 1 (GAB1) is a scaffold protein involved in numerous interactions that propagate signaling by growth factor and cytokine receptors. Here we explore in silico and validate in vivo the role of GAB1 in the control of mitogenic (Ras/MAPK) and survival (phosphatidylinositol 3-kinase (PI3K)/Akt) signaling stimulated by epidermal growth factor (EGF). We built a comprehensive mechanistic model that allows for reliable predictions of temporal patterns of cellular responses to EGF under diverse perturbations, including different EGF doses, GAB1 suppression, expression of mutant proteins, and pharmacological inhibitors. We show that the temporal dynamics of GAB1 tyrosine phosphorylation is significantly controlled by positive GAB1-PI3K feedback and negative MAPK-GAB1 feedback. Our experimental and computational results demonstrate that the essential function of GAB1 is to enhance PI3K/Akt activation and extend the duration of Ras/MAPK signaling. By amplifying positive interactions between survival and mitogenic pathways, GAB1 plays the critical role in cell proliferation and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Carcinoma de Células Escamosas , Línea Celular , Línea Celular Tumoral , Retroalimentación , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Biológicos , Transfección
13.
Biosystems ; 83(2-3): 152-66, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16242235

RESUMEN

Membrane receptors and proteins involved in signal transduction display numerous binding domains and operate as molecular scaffolds generating a variety of parallel reactions and protein complexes. The resulting combinatorial explosion of the number of feasible chemical species and, hence, different states of a network greatly impedes mechanistic modeling of signaling systems. Here we present novel general principles and identify kinetic requirements that allow us to replace a mechanistic picture of all possible micro-states and transitions by a macro-description of states of separate binding sites of network proteins. This domain-oriented approach dramatically reduces computational models of cellular signaling networks by dissecting mechanistic trajectories into the dynamics of macro- and meso-variables. We specify the conditions when the temporal dynamics of micro-states can be exactly or approximately expressed in terms of the product of the relative concentrations of separate domains. We prove that our macro-modeling approach equally applies to signaling systems with low population levels, analyzed by stochastic rather than deterministic equations. Thus, our results greatly facilitate quantitative analysis and computational modeling of multi-protein signaling networks.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Membrana Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Transducción de Señal/fisiología , Animales , Sitios de Unión , Técnicas Químicas Combinatorias , Simulación por Computador , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas Receptoras/metabolismo
14.
Biophys J ; 89(2): 951-66, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15923229

RESUMEN

After activation, many receptors and their adaptor proteins act as scaffolds displaying numerous docking sites and engaging multiple targets. The consequent assemblage of a variety of protein complexes results in a combinatorial increase in the number of feasible molecular species presenting different states of a receptor-scaffold signaling module. Tens of thousands of such microstates emerge even for the initial signal propagation events, greatly impeding a quantitative analysis of networks. Here, we demonstrate that the assumption of independence of molecular events occurring at distinct sites enables us to approximate a mechanistic picture of all possible microstates by a macrodescription of states of separate domains, i.e., macrostates that correspond to experimentally verifiable variables. This analysis dissects a highly branched network into interacting pathways originated by protein complexes assembled on different sites of receptors and scaffolds. We specify when the temporal dynamics of any given microstate can be expressed using the product of the relative concentrations of individual sites. The methods presented here are equally applicable to deterministic and stochastic calculations of the temporal dynamics. Our domain-oriented approach drastically reduces the number of states, processes, and kinetic parameters to be considered for quantification of complex signaling networks that propagate distinct physiological responses.


Asunto(s)
Técnicas Químicas Combinatorias , Citoesqueleto/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Modelos Biológicos , Mapeo de Interacción de Proteínas/métodos , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Sitios de Unión , Simulación por Computador , Citoesqueleto/química , Proteínas de la Matriz Extracelular/química , Cinética , Modelos Químicos , Modelos Estadísticos , Unión Proteica , Receptores de Superficie Celular/química , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA