Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(11): 114869, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39446588

RESUMEN

The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.

2.
NAR Genom Bioinform ; 6(3): lqae119, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281022

RESUMEN

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that are essential for transposon control in animal gonads. In Drosophila ovarian somatic cells, piRNAs are transcribed from large genomic regions called piRNA clusters, which are enriched for transposon fragments and act as a memory of past invasions. Despite being widely present across Drosophila species, somatic piRNA clusters are difficult to identify and study due to their lack of sequence conservation and limited synteny. Current identification methods rely on either extensive manual curation or availability of high-throughput small RNA sequencing data, limiting large-scale comparative studies. We now present FlaHMM, a hidden Markov model developed to automate genomic annotation of flamenco-like unistrand piRNA clusters in Drosophila species, requiring only a genome assembly and transposon annotations. FlaHMM uses transposable element content across 5- or 10-kb bins, which can be calculated from genome sequence alone, and is thus able to detect candidate piRNA clusters without the need to obtain flies and experimentally perform small RNA sequencing. We show that FlaHMM performs on par with piRNA-guided or manual methods, and thus provides a scalable and efficient approach to piRNA cluster annotation in new genome assemblies. FlaHMM is freely available at https://github.com/Hannon-lab/FlaHMM under an MIT licence.

3.
Nat Rev Mol Cell Biol ; 25(6): 423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514886
4.
Nat Commun ; 14(1): 7337, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957172

RESUMEN

The PIWI-interacting RNA (piRNA) pathway prevents endogenous genomic parasites, i.e. transposable elements, from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, are thought to define each species' piRNA repertoire and therefore its capacity to recognize and silence specific transposon families. The unistrand cluster flamenco (flam) is essential in the somatic compartment of the Drosophila ovary to restrict Gypsy-family transposons from infecting the neighbouring germ cells. Disruption of flam results in transposon de-repression and sterility, yet it remains unknown whether this silencing mechanism is present more widely. Here, we systematically characterise 119 Drosophila species and identify five additional flam-like clusters separated by up to 45 million years of evolution. Small RNA-sequencing validated these as bona-fide unistrand piRNA clusters expressed in somatic cells of the ovary, where they selectively target transposons of the Gypsy family. Together, our study provides compelling evidence of a widely conserved transposon silencing mechanism that co-evolved with virus-like Gypsy-family transposons.


Asunto(s)
Proteínas de Drosophila , Retrovirus Endógenos , Humanos , Animales , Femenino , Drosophila/genética , Drosophila/metabolismo , ARN de Interacción con Piwi , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
5.
Nat Commun ; 13(1): 3399, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697697

RESUMEN

Ductal carcinoma in situ (DCIS) is considered a non-invasive precursor to breast cancer, and although associated with an increased risk of developing invasive disease, many women with DCIS will never progress beyond their in situ diagnosis. The path from normal duct to invasive ductal carcinoma (IDC) is not well understood, and efforts to do so are hampered by the substantial heterogeneity that exists between patients, and even within patients. Here we show gene expression analysis from > 2,000 individually micro-dissected ductal lesions representing 145 patients. Combining all samples into one continuous trajectory we show there is a progressive loss in basal layer integrity heading towards IDC, coupled with two epithelial to mesenchymal transitions, one early and a second coinciding with the convergence of DCIS and IDC expression profiles. We identify early processes and potential biomarkers, including CAMK2N1, MNX1, ADCY5, HOXC11 and ANKRD22, whose reduced expression is associated with the progression of DCIS to invasive breast cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Biomarcadores , Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Progresión de la Enfermedad , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción/genética , Transcriptoma
6.
Nat Commun ; 13(1): 2118, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440552

RESUMEN

PIWI-interacting RNAs (piRNAs) are small RNAs required to recognize and silence transposable elements. The 5' ends of mature piRNAs are defined through cleavage of long precursor transcripts, primarily by Zucchini (Zuc). Zuc-dependent cleavage typically occurs immediately upstream of a uridine. However, Zuc lacks sequence preference in vitro, pointing towards additional unknown specificity factors. Here, we examine murine piRNAs and reveal a strong and specific enrichment of three sequences (UAA, UAG, UGA)-corresponding to stop codons-at piRNA 5' ends. Stop codon sequences are also enriched immediately after piRNA processing intermediates, reflecting their Zuc-dependent tail-to-head arrangement. Further analyses reveal that a Zuc in vivo cleavage preference at four sequences (UAA, UAG, UGA, UAC) promotes 5' end stop codons. This observation is conserved across mammals and possibly further. Our work provides new insights into Zuc-dependent cleavage and may point to a previously unrecognized connection between piRNA biogenesis and the translational machinery.


Asunto(s)
Proteínas de Drosophila , Animales , Codón de Terminación/genética , Proteínas de Drosophila/genética , Endorribonucleasas/genética , Mamíferos/genética , Ratones , ARN Interferente Pequeño/genética
7.
Sci Adv ; 8(7): eabj8618, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171685

RESUMEN

Platelet deficiency, known as thrombocytopenia, can cause hemorrhage and is treated with platelet transfusions. We developed a system for the production of platelet precursor cells, megakaryocytes, from pluripotent stem cells. These cultures can be maintained for >100 days, implying culture renewal by megakaryocyte progenitors (MKPs). However, it is unclear whether the MKP state in vitro mirrors the state in vivo, and MKPs cannot be purified using conventional surface markers. We performed single-cell RNA sequencing throughout in vitro differentiation and mapped each state to its equivalent in vivo. This enabled the identification of five surface markers that reproducibly purify MKPs, allowing us insight into their transcriptional and epigenetic profiles. Last, we performed culture optimization, increasing MKP production. Together, this study has mapped parallels between the MKP states in vivo and in vitro and allowed the purification of MKPs, accelerating the progress of in vitro-derived transfusion products toward the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Plaquetas , Diferenciación Celular , Megacariocitos
8.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874452

RESUMEN

Despite four decades of effort, robust propagation of pluripotent stem cells from livestock animals remains challenging. The requirements for self-renewal are unclear and the relationship of cultured stem cells to pluripotent cells resident in the embryo uncertain. Here, we avoided using feeder cells or serum factors to provide a defined culture microenvironment. We show that the combination of activin A, fibroblast growth factor and the Wnt inhibitor XAV939 (AFX) supports establishment and continuous expansion of pluripotent stem cell lines from porcine, ovine and bovine embryos. Germ layer differentiation was evident in teratomas and readily induced in vitro. Global transcriptome analyses highlighted commonality in transcription factor expression across the three species, while global comparison with porcine embryo stages showed proximity to bilaminar disc epiblast. Clonal genetic manipulation and gene targeting were exemplified in porcine stem cells. We further demonstrated that genetically modified AFX stem cells gave rise to cloned porcine foetuses by nuclear transfer. In summary, for major livestock mammals, pluripotent stem cells related to the formative embryonic disc are reliably established using a common and defined signalling environment. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Diferenciación Celular , Embrión de Mamíferos/metabolismo , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Bovinos , Embrión de Mamíferos/citología , Estratos Germinativos/citología , Ganado , Células Madre Pluripotentes/citología , Ovinos , Especificidad de la Especie , Porcinos
9.
Nat Commun ; 12(1): 5864, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620876

RESUMEN

Pausing of RNA polymerase II (Pol II) close to promoters is a common regulatory step in RNA synthesis, and is coordinated by a ribonucleoprotein complex scaffolded by the noncoding RNA RN7SK. The function of RN7SK-regulated gene transcription in adult tissue homoeostasis is currently unknown. Here, we deplete RN7SK during mouse and human epidermal stem cell differentiation. Unexpectedly, loss of this small nuclear RNA specifically reduces transcription of numerous cell cycle regulators leading to cell cycle exit and differentiation. Mechanistically, we show that RN7SK is required for efficient transcription of highly expressed gene pairs with bidirectional promoters, which in the epidermis co-regulated cell cycle and chromosome organization. The reduction in transcription involves impaired splicing and RNA decay, but occurs in the absence of chromatin remodelling at promoters and putative enhancers. Thus, RN7SK is directly required for efficient Pol II transcription of highly transcribed bidirectional gene pairs, and thereby exerts tissue-specific functions, such as maintaining a cycling cell population in the epidermis.


Asunto(s)
Regulación de la Expresión Génica , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Piel/metabolismo , Transcripción Genética , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Cromatina , Ensamble y Desensamble de Cromatina , Epidermis , Femenino , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Empalme del ARN , Piel/patología , Células Madre
10.
Mol Cell ; 81(19): 4059-4075.e11, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34437837

RESUMEN

DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.


Asunto(s)
Linfocitos B/enzimología , ARN Helicasas DEAD-box/metabolismo , Linfoma de Células B/enzimología , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Linfocitos B/patología , Línea Celular Tumoral , Niño , Preescolar , ARN Helicasas DEAD-box/genética , Estrés del Retículo Endoplásmico , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación con Pérdida de Función , Linfoma de Células B/genética , Linfoma de Células B/patología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/genética , Proteínas de Neoplasias/genética , Biosíntesis de Proteínas , Proteoma , Proteostasis , Proteínas Proto-Oncogénicas c-myc/genética , Adulto Joven
11.
Pigment Cell Melanoma Res ; 34(6): 1015-1028, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33793042

RESUMEN

Color patterns within individual feathers are common in birds but little is known about the genetic mechanisms causing such patterns. Here, we investigate the genetic basis for autosomal barring in chicken, a horizontal striping pattern on individual feathers. Using an informative backcross, we demonstrate that the MC1R locus is strongly associated with this phenotype. A deletion at SOX10, underlying the dark brown phenotype on its own, affects the manifestation of the barring pattern. The coding variant L133Q in MC1R is the most likely causal mutation for autosomal barring in this pedigree. Furthermore, a genetic screen across six different breeds showing different patterning phenotypes revealed that the most striking shared characteristics among these breeds were that they all carried the MC1R alleles Birchen or brown. Our data suggest that the presence of activating MC1R mutations enhancing pigment synthesis is an important mechanism underlying pigmentation patterns on individual feathers in chicken. We propose that MC1R and its antagonist ASIP play a critical role for determining within-feather pigmentation patterns in birds by acting as activator and inhibitor possibly in a Turing reaction-diffusion model.


Asunto(s)
Alelos , Proteínas Aviares/genética , Pollos/genética , Sitios Genéticos , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética , Animales , Proteínas Aviares/metabolismo , Pollos/metabolismo , Plumas/metabolismo , Genotipo , Receptor de Melanocortina Tipo 1/metabolismo
12.
Elife ; 102021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33856346

RESUMEN

The nuclear pore complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some Nups can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.


Transposons are genetic sequences, which, when active, can move around the genome and insert themselves into new locations. This can potentially disrupt the information required for cells to work properly: in reproductive organs, for example, transposon activity can lead to infertility. Many organisms therefore have cellular systems that keep transposons in check. Animal cells comprise two main compartments: the nucleus, which contains the genetic information, and the cytosol, where most chemical reactions necessary for life take place. Molecules continually move between nucleus and cytosol, much as people go in and out of a busy train station. The connecting 'doors' between the two compartments are called Nuclear Pore Complexes (NPCs), and their job is to ensure that each molecule passing through reaches its correct destination. Recent research shows that the individual proteins making up NPCs (called nucleoporins) may play other roles within the cell. In particular, genetic studies in fruit flies suggested that some nucleoporins help to control transposon activity within the ovary ­ but how they did this was still unclear. Munafò et al. therefore set out to determine if the nucleoporins were indeed actively silencing the transposons, or if this was just a side effect of altered nuclear-cytosolic transport. Experiments using cells grown from fruit fly ovaries revealed that depleting two specific nucleoporins, Nup54 and Nup58, re-activated transposons with minimal effects on most genes or the overall health of the cells. This suggests that Nup54 and Nup58 play a direct role in transposon silencing. Further, detailed analysis of gene expression in Nup54- and Nup58-lacking cells revealed that the product of one gene, flamenco, was indeed affected. Normally, flamenco acts as a 'master switch' to turn off transposons. Without Nup54 and Nup58, the molecule encoded by flamenco could not reach its dedicated location in the cytosol, and thus could not carry out its task. These results show that, far from being mere 'doorkeepers' for the nucleus, nucleoporins play important roles adapted to individual tissues in the body. Further research will help determine if the same is true for other organisms, and if these mechanisms can help understand human diseases.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Ovario/metabolismo , Interferencia de ARN , Animales , Animales Modificados Genéticamente , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Regulación de la Expresión Génica , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ovario/citología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
13.
BMC Bioinformatics ; 22(1): 110, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676405

RESUMEN

BACKGROUND: Machine learning involves strategies and algorithms that may assist bioinformatics analyses in terms of data mining and knowledge discovery. In several applications, viz. in Life Sciences, it is often more important to understand how a prediction was obtained rather than knowing what prediction was made. To this end so-called interpretable machine learning has been recently advocated. In this study, we implemented an interpretable machine learning package based on the rough set theory. An important aim of our work was provision of statistical properties of the models and their components. RESULTS: We present the R.ROSETTA package, which is an R wrapper of ROSETTA framework. The original ROSETTA functions have been improved and adapted to the R programming environment. The package allows for building and analyzing non-linear interpretable machine learning models. R.ROSETTA gathers combinatorial statistics via rule-based modelling for accessible and transparent results, well-suited for adoption within the greater scientific community. The package also provides statistics and visualization tools that facilitate minimization of analysis bias and noise. The R.ROSETTA package is freely available at https://github.com/komorowskilab/R.ROSETTA . To illustrate the usage of the package, we applied it to a transcriptome dataset from an autism case-control study. Our tool provided hypotheses for potential co-predictive mechanisms among features that discerned phenotype classes. These co-predictors represented neurodevelopmental and autism-related genes. CONCLUSIONS: R.ROSETTA provides new insights for interpretable machine learning analyses and knowledge-based systems. We demonstrated that our package facilitated detection of dependencies for autism-related genes. Although the sample application of R.ROSETTA illustrates transcriptome data analysis, the package can be used to analyze any data organized in decision tables.


Asunto(s)
Algoritmos , Aprendizaje Automático , Estudios de Casos y Controles , Biología Computacional , Minería de Datos
14.
Elife ; 102021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538693

RESUMEN

In animal gonads, the PIWI-interacting RNA (piRNA) pathway guards genome integrity in part through the co-transcriptional gene silencing of transposon insertions. In Drosophila ovaries, piRNA-loaded Piwi detects nascent transposon transcripts and instructs heterochromatin formation through the Panoramix-induced co-transcriptional silencing (PICTS) complex, containing Panoramix, Nxf2 and Nxt1. Here, we report that the highly conserved dynein light chain LC8/Cut-up (Ctp) is an essential component of the PICTS complex. Loss of Ctp results in transposon de-repression and a reduction in repressive chromatin marks specifically at transposon loci. In turn, Ctp can enforce transcriptional silencing when artificially recruited to RNA and DNA reporters. We show that Ctp drives dimerisation of the PICTS complex through its interaction with conserved motifs within Panoramix. Artificial dimerisation of Panoramix bypasses the necessity for its interaction with Ctp, demonstrating that conscription of a protein from a ubiquitous cellular machinery has fulfilled a fundamental requirement for a transposon silencing complex.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dineínas/genética , Silenciador del Gen , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo
15.
Bioinformatics ; 37(5): 717-719, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32866237

RESUMEN

SUMMARY: CONCUR is a standalone tool for codon usage analysis in ribosome profiling experiments. CONCUR uses the aligned reads in BAM format to estimate codon counts at the ribosome E-, P- and A-sites and at flanking positions. AVAILABILITY AND IMPLEMENTATION: CONCUR is written in Perl and is freely available at https://github.com/susbo/concur. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Uso de Codones , Programas Informáticos , Codón/genética , Ribosomas/genética , Análisis de Secuencia
16.
Nucleic Acids Res ; 49(2): 1006-1022, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33330931

RESUMEN

The highly abundant N6-methyladenosine (m6A) RNA modification affects most aspects of mRNA function, yet the precise function of the rarer 5-methylcytidine (m5C) remains largely unknown. Here, we map m5C in the human transcriptome using methylation-dependent individual-nucleotide resolution cross-linking and immunoprecipitation (miCLIP) combined with RNA bisulfite sequencing. We identify NSUN6 as a methyltransferase with strong substrate specificity towards mRNA. NSUN6 primarily targeted three prime untranslated regions (3'UTR) at the consensus sequence motif CTCCA, located in loops of hairpin structures. Knockout and rescue experiments revealed enhanced mRNA and translation levels when NSUN6-targeted mRNAs were methylated. Ribosome profiling further demonstrated that NSUN6-specific methylation correlated with translation termination. While NSUN6 was dispensable for mouse embryonic development, it was down-regulated in human tumours and high expression of NSUN6 indicated better patient outcome of certain cancer types. In summary, our study identifies NSUN6 as a methyltransferase targeting mRNA, potentially as part of a quality control mechanism involved in translation termination fidelity.


Asunto(s)
Citidina/análogos & derivados , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARNt Metiltransferasas/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Línea Celular Tumoral , Uso de Codones , Secuencia de Consenso , Citidina/metabolismo , Células Madre Embrionarias , Técnicas de Inactivación de Genes , Genes Reporteros , Células HEK293 , Humanos , Inmunoprecipitación , Metilación , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , ARN Mensajero/genética , Transcriptoma , ARNt Metiltransferasas/deficiencia
17.
Nat Commun ; 10(1): 2550, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186410

RESUMEN

The presence and absence of RNA modifications regulates RNA metabolism by modulating the binding of writer, reader, and eraser proteins. For 5-methylcytosine (m5C) however, it is largely unknown how it recruits or repels RNA-binding proteins. Here, we decipher the consequences of m5C deposition into the abundant non-coding vault RNA VTRNA1.1. Methylation of cytosine 69 in VTRNA1.1 occurs frequently in human cells, is exclusively mediated by NSUN2, and determines the processing of VTRNA1.1 into small-vault RNAs (svRNAs). We identify the serine/arginine rich splicing factor 2 (SRSF2) as a novel VTRNA1.1-binding protein that counteracts VTRNA1.1 processing by binding the non-methylated form with higher affinity. Both NSUN2 and SRSF2 orchestrate the production of distinct svRNAs. Finally, we discover a functional role of svRNAs in regulating the epidermal differentiation programme. Thus, our data reveal a direct role for m5C in the processing of VTRNA1.1 that involves SRSF2 and is crucial for efficient cellular differentiation.


Asunto(s)
5-Metilcitosina/metabolismo , Metilación de ADN , Células Epidérmicas/citología , Metiltransferasas/metabolismo , ARN/metabolismo , Partículas Ribonucleoproteicas en Bóveda/genética , Diferenciación Celular , Línea Celular , Citosina/metabolismo , Células Epidérmicas/metabolismo , Células HEK293 , Células HeLa , Células Madre Embrionarias Humanas/citología , Humanos , Metiltransferasas/genética , ARN/genética , Partículas Ribonucleoproteicas en Bóveda/metabolismo
18.
Genome Biol ; 20(1): 119, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174582

RESUMEN

BACKGROUND: The uneven use of synonymous codons in the transcriptome regulates the efficiency and fidelity of protein translation rates. Yet, the importance of this codon bias in regulating cell state-specific expression programmes is currently debated. Here, we ask whether different codon usage controls gene expression programmes in self-renewing and differentiating embryonic stem cells. RESULTS: Using ribosome and transcriptome profiling, we identify distinct codon signatures during human embryonic stem cell differentiation. We find that cell state-specific codon bias is determined by the guanine-cytosine (GC) content of differentially expressed genes. By measuring the codon frequencies at the ribosome active sites interacting with transfer RNAs (tRNA), we further discover that self-renewing cells optimize translation of codons that depend on the inosine tRNA modification in the anticodon wobble position. Accordingly, inosine levels are highest in human pluripotent embryonic stem cells. This effect is conserved in mice and is independent of the differentiation stimulus. CONCLUSIONS: We show that GC content influences cell state-specific mRNA levels, and we reveal how translational mechanisms based on tRNA modifications change codon usage in embryonic stem cells.


Asunto(s)
Codón , Células Madre Embrionarias/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Animales , Composición de Base , Autorrenovación de las Células , Humanos
19.
PLoS Biol ; 17(6): e3000297, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199786

RESUMEN

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.


Asunto(s)
ADN-Citosina Metilasas/metabolismo , Metiltransferasas/metabolismo , Animales , Línea Celular , Citosina/metabolismo , Metilación de ADN/fisiología , ADN-Citosina Metilasas/fisiología , Humanos , Ratones , Estrés Oxidativo/fisiología , Biosíntesis de Proteínas/fisiología , ARN/metabolismo , ARN de Transferencia/metabolismo
20.
Cell Stem Cell ; 24(5): 785-801.e7, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031137

RESUMEN

The gene regulatory network (GRN) of naive mouse embryonic stem cells (ESCs) must be reconfigured to enable lineage commitment. TCF3 sanctions rewiring by suppressing components of the ESC transcription factor circuitry. However, TCF3 depletion only delays and does not prevent transition to formative pluripotency. Here, we delineate additional contributions of the ETS-family transcription factor ETV5 and the repressor RBPJ. In response to ERK signaling, ETV5 switches activity from supporting self-renewal and undergoes genome relocation linked to commissioning of enhancers activated in formative epiblast. Independent upregulation of RBPJ prevents re-expression of potent naive factors, TBX3 and NANOG, to secure exit from the naive state. Triple deletion of Etv5, Rbpj, and Tcf3 disables ESCs, such that they remain largely undifferentiated and locked in self-renewal, even in the presence of differentiation stimuli. Thus, genetic elimination of three complementary drivers of network transition stalls developmental progression, emulating environmental insulation by small-molecule inhibitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular , Linaje de la Célula , Autorrenovación de las Células , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...