Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(3): 739-744, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38215221

RESUMEN

We demonstrate the use of the symmetrical diethyl(dimethyl)difluoromethylene bisphosphonate reagent for the synthesis of terminal and unsymmetrical difluoromethylene bisphosphonates, close analogues of biologically important molecules. The difference in reactivity of the methyl and ethyl groups in the symmetrical diethyl(dimthyl)difluoromethylene bisphosphonate is exploited in a stepwise demethylation-condensation sequence to functionalize either side of the reagent to allow the generation of a series of close bioisosteres of natural pyrophosphate molecules, including ADPr, CDP-glycerol and CDP-ribitol.


Asunto(s)
Difosfonatos , Hidrocarburos Fluorados
3.
Nat Struct Mol Biol ; 26(11): 1071-1077, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695185

RESUMEN

Modification of specific Ser and Thr residues of nucleocytoplasmic proteins with O-GlcNAc, catalyzed by O-GlcNAc transferase (OGT), is an abundant posttranslational event essential for proper animal development and is dysregulated in various diseases. Due to the rapid concurrent removal by the single O-GlcNAcase (OGA), precise functional dissection of site-specific O-GlcNAc modification in vivo is currently not possible without affecting the entire O-GlcNAc proteome. Exploiting the fortuitous promiscuity of OGT, we show that S-GlcNAc is a hydrolytically stable and accurate structural mimic of O-GlcNAc that can be encoded in mammalian systems with CRISPR-Cas9 in an otherwise unperturbed O-GlcNAcome. Using this approach, we target an elusive Ser 405 O-GlcNAc site on OGA, showing that this site-specific modification affects OGA stability.


Asunto(s)
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/genética , Animales , Sistemas CRISPR-Cas , Glicosilación , Células HEK293 , Humanos , Ratones , Modelos Moleculares , N-Acetilglucosaminiltransferasas/química , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , beta-N-Acetilhexosaminidasas/química , beta-N-Acetilhexosaminidasas/genética
4.
Proc Natl Acad Sci U S A ; 116(30): 14961-14970, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31296563

RESUMEN

O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.


Asunto(s)
Dominio Catalítico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , N-Acetilglucosaminiltransferasas/genética , Animales , Línea Celular , Drosophila , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Factor C1 de la Célula Huésped/metabolismo , Humanos , Discapacidad Intelectual/patología , Ratones , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Neurogénesis , Mutación Puntual , Gemelos Monocigóticos
5.
J Biol Chem ; 293(46): 17754-17768, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30224358

RESUMEN

O-Linked GlcNAc transferase (OGT) possesses dual glycosyltransferase-protease activities. OGT thereby stably glycosylates serines and threonines of numerous proteins and, via a transient glutamate glycosylation, cleaves a single known substrate-the so-called HCF-1PRO repeat of the transcriptional co-regulator host-cell factor 1 (HCF-1). Here, we probed the relationship between these distinct glycosylation and proteolytic activities. For proteolysis, the HCF-1PRO repeat possesses an important extended threonine-rich region that is tightly bound by the OGT tetratricopeptide-repeat (TPR) region. We report that linkage of this HCF-1PRO-repeat, threonine-rich region to heterologous substrate sequences also potentiates robust serine glycosylation with the otherwise poor Rp-αS-UDP-GlcNAc diastereomer phosphorothioate and UDP-5S-GlcNAc OGT co-substrates. Furthermore, it potentiated proteolysis of a non-HCF-1PRO-repeat cleavage sequence, provided it contained an appropriately positioned glutamate residue. Using serine- or glutamate-containing HCF-1PRO-repeat sequences, we show that proposed OGT-based or UDP-GlcNAc-based serine-acceptor residue activation mechanisms can be circumvented independently, but not when disrupted together. In contrast, disruption of both proposed activation mechanisms even in combination did not inhibit OGT-mediated proteolysis. These results reveal a multiplicity of OGT glycosylation strategies, some leading to proteolysis, which could be targets of alternative molecular regulatory strategies.


Asunto(s)
Endopeptidasas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Endopeptidasas/genética , Glicosilación , Factor C1 de la Célula Huésped/genética , Humanos , Simulación de Dinámica Molecular , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Proteolisis , Estereoisomerismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Uridina Difosfato N-Acetilglucosamina/metabolismo
6.
Bioconjug Chem ; 29(6): 1834-1840, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29723473

RESUMEN

O-GlcNAc transferase (OGT) is an essential glycosyltransferase that installs the O-GlcNAc post-translational modification on the nucleocytoplasmic proteome. We report the development of S-linked UDP-peptide conjugates as potent bisubstrate OGT inhibitors. These compounds were assembled in a modular fashion by photoinitiated thiol-ene conjugation of allyl-UDP and optimal acceptor peptides in which the acceptor serine was replaced with cysteine. The conjugate VTPVC(S-propyl-UDP)TA ( Ki = 1.3 µM) inhibits the OGT activity in HeLa cell lysates. Linear fusions of this conjugate with cell penetrating peptides were explored as prototypes of cell-penetrant OGT inhibitors. A crystal structure of human OGT with the inhibitor revealed mimicry of the interactions seen in the pseudo-Michaelis complex. Furthermore, a fluorophore-tagged derivative of the inhibitor works as a high affinity probe in a fluorescence polarimetry hOGT assay.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Péptidos/química , Péptidos/farmacología , Uridina Difosfato/análogos & derivados , Uridina Difosfato/farmacología , Diseño de Fármacos , Células HeLa , Humanos , Simulación del Acoplamiento Molecular , N-Acetilglucosaminiltransferasas/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología
7.
ACS Chem Biol ; 13(5): 1353-1360, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29641181

RESUMEN

The attachment of the sugar N-acetyl-D-glucosamine (GlcNAc) to specific serine and threonine residues on proteins is referred to as protein O-GlcNAcylation. O-GlcNAc transferase (OGT) is the enzyme responsible for carrying out the modification, while O-GlcNAcase (OGA) reverses it. Protein O-GlcNAcylation has been implicated in a wide range of cellular processes including transcription, proteostasis, and stress response. Dysregulation of O-GlcNAc has been linked to diabetes, cancer, and neurodegenerative and cardiovascular disease. OGA has been proposed to be a drug target for the treatment of Alzheimer's and cardiovascular disease given that increased O-GlcNAc levels appear to exert a protective effect. The search for specific, potent, and drug-like OGA inhibitors with bioavailability in the brain is therefore a field of active research, requiring orthogonal high-throughput assay platforms. Here, we describe the synthesis of a novel probe for use in a fluorescence polarization based assay for the discovery of inhibitors of OGA. We show that the probe is suitable for use with both human OGA, as well as the orthologous bacterial counterpart from Clostridium perfringens, CpOGA, and the lysosomal hexosaminidases HexA/B. We structurally characterize CpOGA in complex with a ligand identified from a fragment library screen using this assay. The versatile synthesis procedure could be adapted for making fluorescent probes for the assay of other glycoside hydrolases.


Asunto(s)
Polarización de Fluorescencia/métodos , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Cristalografía por Rayos X , Humanos , N-Acetilglucosaminiltransferasas/química , Prueba de Estudio Conceptual , Conformación Proteica , Especificidad por Sustrato
8.
Open Biol ; 7(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28659383

RESUMEN

O-linked N-acetylglucosamine (O-GlcNAc) is an essential and dynamic post-translational modification found on hundreds of nucleocytoplasmic proteins in metazoa. Although a single enzyme, O-GlcNAc transferase (OGT), generates the entire cytosolic O-GlcNAc proteome, it is not understood how it recognizes its protein substrates, targeting only a fraction of serines/threonines in the metazoan proteome for glycosylation. We describe a trapped complex of human OGT with the C-terminal domain of TAB1, a key innate immunity-signalling O-GlcNAc protein, revealing extensive interactions with the tetratricopeptide repeats of OGT. Confirmed by mutagenesis, this interaction suggests that glycosylation substrate specificity is achieved by recognition of a degenerate sequon in the active site combined with an extended conformation C-terminal of the O-GlcNAc target site.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Repeticiones de Tetratricopéptidos/fisiología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Glicosilación , Humanos , N-Acetilglucosaminiltransferasas/genética , Alineación de Secuencia , Especificidad por Sustrato , Repeticiones de Tetratricopéptidos/genética
9.
Genes Dev ; 30(8): 960-72, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27056667

RESUMEN

In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc transferase (OGT) catalyzes Ser/ThrO-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase-protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-translational modification within one enzyme. Although occurring within the same active site, we show here that glycosylation and proteolysis occur through separable mechanisms. OGT consists of tetratricopeptide repeat (TPR) and catalytic domains, which, together with UDP-GlcNAc, are required for both glycosylation and proteolysis. Nevertheless, a specific TPR domain contact with the HCF-1 substrate is critical for proteolysis but not Ser/Thr glycosylation. In contrast, key catalytic domain residues and even a UDP-GlcNAc oxygen important for Ser/Thr glycosylation are irrelevant for proteolysis. Thus, from a dual glycosyltransferase-protease, essentially single-activity enzymes can be engineered both in vitro and in vivo. Curiously, whereas OGT-mediated HCF-1 proteolysis is limited to vertebrate species, invertebrate OGTs can cleave human HCF-1. We present a model for the evolution of HCF-1 proteolysis by OGT.


Asunto(s)
Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteolisis , Secuencias de Aminoácidos , Animales , Dominio Catalítico , Simulación por Computador , Evolución Molecular , Humanos , Invertebrados/enzimología , Modelos Moleculares , Mutación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
10.
Nat Struct Mol Biol ; 22(9): 744-750, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237509

RESUMEN

O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoans. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay to a library of peptides. We mapped sites of O-GlcNAc modification by electron transfer dissociation MS and found that they correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with Homo sapiens OGT suggest that a combination of size and conformational restriction defines sequence specificity in the -3 to +2 subsites. This work reveals that although the N-terminal TPR repeats of OGT may have roles in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a substantial contribution to O-GlcNAc site specificity.


Asunto(s)
Dominio Catalítico , Glicosilación , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
11.
J Biol Chem ; 289(33): 23020-23028, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24942743

RESUMEN

Chitin synthases (CHS) produce chitin, an essential component of the fungal cell wall. The molecular mechanism of processive chitin synthesis is not understood, limiting the discovery of new inhibitors of this enzyme class. We identified the bacterial glycosyltransferase NodC as an appropriate model system to study the general structure and reaction mechanism of CHS. A high throughput screening-compatible novel assay demonstrates that a known inhibitor of fungal CHS also inhibit NodC. A structural model of NodC, on the basis of the recently published BcsA cellulose synthase structure, enabled probing of the catalytic mechanism by mutagenesis, demonstrating the essential roles of the DD and QXXRW catalytic motifs. The NodC membrane topology was mapped, validating the structural model. Together, these approaches give insight into the CHS structure and mechanism and provide a platform for the discovery of inhibitors for this antifungal target.


Asunto(s)
Proteínas Bacterianas , Quitina Sintasa , Quitina , Modelos Biológicos , Modelos Moleculares , Sinorhizobium meliloti/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Quitina/biosíntesis , Quitina/química , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo
12.
Biochem J ; 457(3): 497-502, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24256146

RESUMEN

Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C3 linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Oligopéptidos/farmacología , Uridina Difosfato/análogos & derivados , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glicosilación/efectos de los fármacos , Humanos , Interferometría , Cinética , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Oligopéptidos/síntesis química , Oligopéptidos/química , Oligopéptidos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Uridina Difosfato/química , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacología
13.
J Proteome Res ; 12(2): 927-36, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23301498

RESUMEN

The post-translational modification of proteins with N-acetylglucosamine (O-GlcNAc) is involved in the regulation of a wide variety of cellular processes and associated with a number of chronic diseases. Despite its emerging biological significance, the systematic identification of O-GlcNAc proteins is still challenging. In the present study, we demonstrate a significantly improved O-GlcNAc protein enrichment procedure, which exploits metabolic labeling of cells by azide-modified GlcNAc and copper-mediated Click chemistry for purification of modified proteins on an alkyne-resin. On-resin proteolysis using trypsin followed by LC-MS/MS afforded the identification of around 1500 O-GlcNAc proteins from a single cell line. Subsequent elution of covalently resin bound O-GlcNAc peptides using selective ß-elimination enabled the identification of 185 O-GlcNAc modification sites on 80 proteins. To demonstrate the practical utility of the developed approach, we studied the global effects of the O-GlcNAcase inhibitor GlcNAcstatin G on the level of O-GlcNAc modification of cellular proteins. About 200 proteins including several key players involved in the hexosamine signaling pathway showed significantly increased O-GlcNAcylation levels in response to the drug, which further strengthens the link of O-GlcNAc protein modification to cellular nutrient sensing and response.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas Inmovilizadas/aislamiento & purificación , Proteínas Inmovilizadas/metabolismo , Fragmentos de Péptidos/análisis , Procesamiento Proteico-Postraduccional , Proteoma/aislamiento & purificación , Proteoma/metabolismo , Alquinos/química , Azidas/química , Cromatografía Liquida , Química Clic , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Espectrometría de Masas en Tándem , Tripsina/química , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/metabolismo
14.
Nat Chem Biol ; 8(12): 969-74, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23103942

RESUMEN

Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human OGT recognizes the sugar donor and acceptor peptide and uses a new catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base as well as an essential lysine. This mechanism seems to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate and explains the unexpected specificity of a recently reported metabolic OGT inhibitor.


Asunto(s)
Difosfatos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Nucleótidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Cinética , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estereoisomerismo , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Uridina Difosfato Galactosa/metabolismo
15.
Chem Biol ; 19(2): 173-8, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22365600

RESUMEN

Protein O-GlcNAcylation is an essential reversible posttranslational modification in higher eukaryotes. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase and O-GlcNAcase, respectively. We report the molecular details of the interaction of a bacterial O-GlcNAcase homolog with three different synthetic glycopeptides derived from characterized O-GlcNAc sites in the human proteome. Strikingly, the peptides bind a conserved O-GlcNAcase substrate binding groove with similar orientation and conformation. In addition to extensive contacts with the sugar, O-GlcNAcase recognizes the peptide backbone through hydrophobic interactions and intramolecular hydrogen bonds, while avoiding interactions with the glycopeptide side chains. These findings elucidate the molecular basis of O-GlcNAcase substrate specificity, explaining how a single enzyme achieves cycling of the complete O-GlcNAc proteome. In addition, this work will aid development of O-GlcNAcase inhibitors that target the peptide binding site.


Asunto(s)
Carbohidratos/química , N-Acetilglucosaminiltransferasas/química , Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Glicosilación , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , N-Acetilglucosaminiltransferasas/metabolismo , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteoma/metabolismo , Especificidad por Sustrato
16.
EMBO J ; 31(6): 1394-404, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22307082

RESUMEN

Transforming growth factor (TGF)-ß-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as transforming growth factor-ß, tumour necrosis factor (TNF), interleukin-1 (IL-1) and wnt family ligands. TAK1 is found in complex with binding partners TAB1-3, phosphorylation and ubiquitination of which has been found to regulate TAK1 activity. In this study, we show that TAB1 is modified with N-acetylglucosamine (O-GlcNAc) on a single site, Ser395. With the help of a novel O-GlcNAc site-specific antibody, we demonstrate that O-GlcNAcylation of TAB1 is induced by IL-1 and osmotic stress, known inducers of the TAK1 signalling cascade. By reintroducing wild-type or an O-GlcNAc-deficient mutant TAB1 (S395A) into Tab1(-/-) mouse embryonic fibroblasts, we determined that O-GlcNAcylation of TAB1 is required for full TAK1 activation upon stimulation with IL-1/osmotic stress, for downstream activation of nuclear factor κB and finally production of IL-6 and TNFα. This is one of the first examples of a single O-GlcNAc site on a signalling protein modulating a key innate immunity signalling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Acilación , Animales , Células Cultivadas , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , FN-kappa B/metabolismo , Presión Osmótica/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Transducción de Señal/fisiología
17.
ACS Chem Biol ; 6(6): 648-57, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21425873

RESUMEN

Protozoan parasites of the genus Leishmania synthesize lipophosphoglycans (LPGs), phosphoglycans and proteophosphoglycans that contain phosphosaccharide repeat units of [-6)Gal(ß1-4)Man(α1-OPO(3)H-]. The repeat structures are assembled by sequential addition of Manα1-OPO(3)H and ß-Gal. In this study, an UDP-Gal-dependent activity was detected in L. donovani and L. major membranes using synthetic phospho-oligosaccharide fragments of lipophosphoglycan as acceptor substrates. Incubation of a microsomal preparation from L. donovani or L. major parasites with synthetic substrates and UDP-[6-(3)H]Gal resulted in incorporation of radiolabel into these exogenous acceptors. The [(3)H]galactose-labeled products were characterized by degradation into radioactive, low molecular mass fragments upon hydrolysis with mild acid and treatment with ß-galactosidases. We showed that the activity detected with L. donovani membranes is the elongating ß-d-galactosyltransferase associated with LPG phosphosaccharide backbone biosynthesis (eGalT). The eGalT activity showed a requirement for the presence of at least one phosphodiester group in the substrate and it was enhanced dramatically when two or three phosphodiester groups were present. Using the same substrates we detected two types of galactosyltransferase activity in L. major membranes: the elongating ß-d-galactosyltransferase and a branching ß-d-galactosyltransferase (bGalT). Both L. major enzymes required a minimum of one phosphodiester group present in the substrate, but acceptors with two or three phosphodiester groups were found to be superior.


Asunto(s)
Leishmania/enzimología , beta-N-Acetilglucosaminilglicopéptido beta-1,4-Galactosiltransferasa/metabolismo , Conformación de Carbohidratos , Activación Enzimática , Glicoesfingolípidos/biosíntesis , Datos de Secuencia Molecular , Especificidad por Sustrato
18.
Amino Acids ; 40(3): 781-92, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20640461

RESUMEN

Protein glycosylation on serine/threonine residues with N-acetylglucosamine (O-GlcNAc) is a dynamic, inducible and abundant post-translational modification. It is thought to regulate many cellular processes and there are examples of interplay between O-GlcNAc and protein phosphorylation. In metazoa, a single, highly conserved and essential gene encodes the O-GlcNAc transferase (OGT) that transfers GlcNAc onto substrate proteins using UDP-GlcNAc as the sugar donor. Specific inhibitors of human OGT would be useful tools to probe the role of this post-translational modification in regulating processes in the living cell. Here, we describe the synthesis of novel UDP-GlcNAc/UDP analogues and evaluate their inhibitory properties and structural binding modes in vitro alongside alloxan, a previously reported weak OGT inhibitor. While the novel analogues are not active on living cells, they inhibit the enzyme in the micromolar range and together with the structural data provide useful templates for further optimisation.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/química , Acetilglucosamina/metabolismo , Inhibidores Enzimáticos/síntesis química , Glicosilación , Humanos , Cinética , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Unión Proteica , Proteínas/metabolismo , Especificidad por Sustrato
19.
Chem Biol ; 17(11): 1250-5, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21095575

RESUMEN

Posttranslational modification of metazoan nucleocytoplasmic proteins with N-acetylglucosamine (O-GlcNAc) is essential, dynamic, and inducible and can compete with protein phosphorylation in signal transduction. Inhibitors of O-GlcNAcase, the enzyme removing O-GlcNAc, are useful tools for studying the role of O-GlcNAc in a range of cellular processes. We report the discovery of nanomolar OGA inhibitors that are up to 900,000-fold selective over the related lysosomal hexosaminidases. When applied at nanomolar concentrations on live cells, these cell-penetrant molecules shift the O-GlcNAc equilibrium toward hyper-O-GlcNAcylation with EC50 values down to 3 nM and are thus invaluable tools for the study of O-GlcNAc cell biology.


Asunto(s)
Inhibidores Enzimáticos/química , Hexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Acetilglucosamina/química , Sustitución de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Células HEK293 , Hexosaminidasas/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
20.
Tetrahedron ; 66(39-3): 7838-7849, 2010 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-20976183

RESUMEN

We report a novel approach to the synthesis of GlcNAcstatins-members of an emerging family of potent and selective inhibitors of peptidyl O-GlcNAc hydrolase build upon tetrahydroimidazo[1,2-a]pyridine scaffold. Making use of a streamlined synthetic sequence featuring de novo synthesis of imidazoles from glyoxal, ammonia and aldehydes, a properly functionalised linear GlcNAcstatin precursor has been efficiently prepared starting from methyl 3,4-O-(2',3'-dimethoxybutane-2',3'-diyl)-α-d-mannopyranoside. Subsequent ring closure of the linear precursor in an intramolecular S(N)2 process furnished the key fused d-mannose-imidazole GlcNAcstatin precursor in excellent yield. Finally, a sequence of transformations of this key intermediate granted expeditious access to a variety of the target compounds bearing a C(2)-phenethyl group and a range of N(8) acyl substituents. The versatility of the new approach stems from an appropriate choice of a set of acid labile permanent protecting groups on the monosaccharide starting material. Application was demonstrated by the synthesis of GlcNAcstatins containing polyunsaturated and thiol-containing amido substituents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...