Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Chem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760434

RESUMEN

Owing to its high toxicity, the chemistry of element number four, beryllium, is poorly understood. However, as the lightest elements provide the basis for fundamental models of chemical bonding, there is a need for greater insight into the properties of beryllium. In this context, the chemistry of the homo-elemental Be-Be bond is of fundamental interest. Here the ligand metathesis chemistry of diberyllocene (1; CpBeBeCp)-a stable complex with a Be-Be bond-has been investigated. These studies yield two complexes with Be-Be bonds: Cp*BeBeCp (2) and [K{(HCDippN)2BO}2]BeBeCp (3; Dipp = 2,6-diisopropylphenyl). Quantum chemical calculations indicate that the Be-Be bond in 3 is polarized to such an extent that the complex could be formulated as a mixed-oxidation state Be0/BeII complex. Correspondingly, it is demonstrated that 3 can transfer the 'beryllyl' anion, [BeCp]-, to an organic substrate, by analogy with the reactivity of sp2-sp3 diboranes. Indeed, this work reveals striking similarities between the homo-elemental bonding linkages of beryllium and boron, despite the respective metallic and non-metallic natures of these elements.

2.
Dalton Trans ; 53(1): 33-39, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38031468

RESUMEN

The study of alkaline earth metal complexes is undergoing a renaissance. Stable molecular species featuring Mg-Mg bonds were reported in 2007 and their reactivity has since been intensively investigated. Motivated by this work, efforts have also been devoted to the synthesis of complexes featuring Be-Be and Ca-Ca bonds. These collective endeavours have revealed that the chemistry of the group 2 metals is richer and more complex than had previously been appreciated. Here, a discussion of the nature of homometallic alkaline earth bonding is presented, recent synthetic advances are described, and future directions are considered.

3.
Science ; 380(6650): 1147-1149, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319227

RESUMEN

The complex diberyllocene, CpBeBeCp (Cp, cyclopentadienyl anion), has been the subject of numerous chemical investigations over the past five decades yet has eluded experimental characterization. We report the preparation and isolation of the compound by the reduction of beryllocene (BeCp2) with a dimeric magnesium(I) complex and determination of its structure in the solid state by means of x-ray crystallography. Diberyllocene acts as a reductant in reactions that form beryllium-aluminum and beryllium-zinc bonds. Quantum chemical calculations indicate parallels between the electronic structure of diberyllocene and the simple homodiatomic species diberyllium (Be2).

4.
J Am Chem Soc ; 145(8): 4408-4413, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36786728

RESUMEN

The reactions of anionic aluminium or gallium nucleophiles {K[E(NON)]}2 (E = Al, 1; Ga, 2; NON = 4,5-bis(2,6-diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) with beryllocene (BeCp2) led to the displacement of one cyclopentadienyl ligand at beryllium and the formation of compounds containing Be-Al or Be-Ga bonds (NON)EBeCp (E = Al, 3; Ga, 4). The Be-Al bond in the beryllium-aluminyl complex [2.310(4) Å] is much shorter than that found in the small number of previous examples [2.368(2) to 2.432(6) Å], and quantum chemical calculations suggest the existence of a non-nuclear attractor (NNA) for the Be-Al interaction. This represents the first example of a NNA for a heteroatomic interaction in an isolated molecular complex. As a result of this unusual electronic structure and the similarity in the Pauling electronegativities of beryllium and aluminium, the charge at the beryllium center (+1.39) in 3 is calculated to be less positive than that of the aluminium center (+1.88). This calculated charge distribution suggests the possibility for nucleophilic behavior at beryllium and correlates with the observed reactivity of the beryllium-aluminyl complex with N,N'-diisopropylcarbodiimide─the electrophilic carbon center of the carbodiimide undergoes nucleophilic attack by beryllium, thereby yielding a beryllium-diaminocarbene complex.

5.
J Am Chem Soc ; 144(22): 9764-9774, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609882

RESUMEN

Since the advent of organotransuranium chemistry six decades ago, structurally verified complexes remain restricted to π-bonded carbocycle and σ-bonded hydrocarbyl derivatives. Thus, transuranium-carbon multiple or dative bonds are yet to be reported. Here, utilizing diphosphoniomethanide precursors we report the synthesis and characterization of transuranium-carbene derivatives, namely, diphosphonio-alkylidene- and N-heterocyclic carbene-neptunium(III) complexes that exhibit polarized-covalent σ2π2 multiple and dative σ2 single transuranium-carbon bond interactions, respectively. The reaction of [NpIIII3(THF)4] with [Rb(BIPMTMSH)] (BIPMTMSH = {HC(PPh2NSiMe3)2}1-) affords [(BIPMTMSH)NpIII(I)2(THF)] (3Np) in situ, and subsequent treatment with the N-heterocyclic carbene {C(NMeCMe)2} (IMe4) allows isolation of [(BIPMTMSH)NpIII(I)2(IMe4)] (4Np). Separate treatment of in situ prepared 3Np with benzyl potassium in 1,2-dimethoxyethane (DME) affords [(BIPMTMS)NpIII(I)(DME)] (5Np, BIPMTMS = {C(PPh2NSiMe3)2}2-). Analogously, addition of benzyl potassium and IMe4 to 4Np gives [(BIPMTMS)NpIII(I)(IMe4)2] (6Np). The synthesis of 3Np-6Np was facilitated by adopting a scaled-down prechoreographed approach using cerium synthetic surrogates. The thorium(III) and uranium(III) analogues of these neptunium(III) complexes are currently unavailable, meaning that the synthesis of 4Np-6Np provides an example of experimental grounding of 5f- vs 5f- and 5f- vs 4f-element bonding and reactivity comparisons being led by nonaqueous transuranium chemistry rather than thorium and uranium congeners. Computational analysis suggests that these NpIII═C bonds are more covalent than UIII═C, CeIII═C, and PmIII═C congeners but comparable to analogous UIV═C bonds in terms of bond orders and total metal contributions to the M═C bonds. A preliminary assessment of NpIII═C reactivity has introduced multiple bond metathesis to transuranium chemistry, extending the range of known metallo-Wittig reactions to encompass actinide oxidation states III-VI.

7.
Nature ; 598(7879): 72-75, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425584

RESUMEN

Metal-metal bonding is a widely studied area of chemistry1-3, and has become a mature field spanning numerous d transition metal and main group complexes4-7. By contrast, actinide-actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6-7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium-thorium bonds in frozen matrices have produced only ThHn (n = 1-4)14. Thus, there are no isolable actinide-actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide-actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium-thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide-actinide bonding.

8.
Chem Commun (Camb) ; 57(41): 5090-5093, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33899851

RESUMEN

Room temperature reaction of the uranium(iv)-carbene [U{C(SiMe3)(PPh2)}(BIPMTMS)(µ-Cl)Li(TMEDA)(µ-TMEDA)0.5]2 (1, BIPMTMS = C(PPh2NSiMe3)2) with white phosphorus (P4) produces the organo-P5 compound [P5{C(SiMe3)(PPh2)}2][Li(TMEDA)2] (2) and the uranium(iv)-methanediide [U{BIPMTMS}{Cl}{µ-Cl}2{Li(TMEDA)}] (3). This is an unprecedented example of cooperative metal-carbene P4 activation/insertion into a metal-carbon double bond and also an actinide complex reacting with P4 to directly form an organophosphorus species. Conducting the reaction at low temperature permits the isolation of the diuranium(iv) complex [{U(BIPMTMS)([µ-η2:η2-P2]C[SiMe3][PPh2])}2] (4), which then converts to 2 and 3. Thus, surprisingly, in contrast to all other actinide P4 reactivity, although this reaction produces catenation overall it proceeds via P4 cleavage to functionalised P2 units. Hence, this work establishes a proof of concept synthetic cycle for direct fragmentation, catenation, and functionalisation of P4.

9.
Angew Chem Int Ed Engl ; 60(3): 1567-1572, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33022877

RESUMEN

"GaOTf" is a simple, convenient source of low-valent gallium for synthetic chemistry and catalysis. However, little is currently known about its composition or reactivity. In this work, 71 Ga NMR spectroscopy shows the presence of [Ga(arene)n ]+ salts on oxidation of Ga metal with AgOTf in arene solvents. However, a more complex picture of speciation is uncovered by X-ray diffraction studies. In all cases, mixed-valence compounds containing Ga-arene and Ga-OTf coordination motifs, in addition to an unusual "naked" [Ga]+ ion, are found. Addition of 18-crown-6 allows for the isolation of a discrete GaI crown complex. Evidence of a potential intermediate in the formation of "GaOTf" has been isolated in the form of the bimetallic silver(I)/gallium(I) cluster anion [Ag4 {Ga(OTf)3 }4 (µ-Ga)6 (OTf)4 ]2- .

10.
Chem Sci ; 11(26): 6789-6794, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34094128

RESUMEN

Despite the vast array of η n -carbocyclic C5-8 complexes reported for actinides, cyclobutadienyl (C4) remain exceedingly rare, being restricted to six uranium examples. Here, overcoming the inherent challenges of installing highly reducing C4-ligands onto actinides when using polar starting materials such as halides, we report that reaction of [Th(η8-C8H8)2] with [K2{C4(SiMe3)4}] gives [{Th(η4-C4[SiMe3]4)(µ-η8-C8H8)(µ-η2-C8H8)(K[C6H5Me]2)}2{K(C6H5Me)}{K}] (1), a new type of heteroleptic actinocene. Quantum chemical calculations suggest that the thorium ion engages in π- and δ-bonding to the η4-cyclobutadienyl and η8-cyclooctatetraenyl ligands, respectively. Furthermore, the coordination sphere of this bent thorocene analogue is supplemented by an η2-cyclooctatetraenyl interaction, which calculations suggest is composed of σ- and π-symmetry donations from in-plane in- and out-of-phase C[double bond, length as m-dash]C 2p-orbital combinations to vacant thorium 6d orbitals. The characterisation data are consistent with this being a metal-alkene-type interaction that is integral to the bent structure and stability of this complex.

11.
Angew Chem Int Ed Engl ; 59(1): 295-299, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31724808

RESUMEN

Despite there being numerous examples of f-element compounds supported by cyclopentadienyl, arene, cycloheptatrienyl, and cyclooctatetraenyl ligands (C5-8 ), cyclobutadienyl (C4 ) complexes remain exceedingly rare. Here, we report that reaction of [Li2 {C4 (SiMe3 )4 }(THF)2 ] (1) with [U(BH4 )3 (THF)2 ] (2) gives the pianostool complex [U{C4 (SiMe3 )4 }(BH4 )3 ][Li(THF)4 ] (3), where use of a borohydride and preformed C4 -unit circumvents difficulties in product isolation and closing a C4 -ring at uranium. Complex 3 is an unprecedented example of an f-element half-sandwich cyclobutadienyl complex, and it is only the second example of an actinide-cyclobutadienyl complex, the other being an inverse-sandwich. The U-C distances are short (av. 2.513 Å), reflecting the formal 2- charge of the C4 -unit, and the SiMe3 groups are displaced from the C4 -plane, which we propose maximises U-C4 orbital overlap. DFT calculations identify two quasi-degenerate U-C4 π-bonds utilising the ψ2 and ψ3 molecular orbitals of the C4 -unit, but the potential δ-bond using the ψ4 orbital is vacant.

12.
Nat Chem ; 11(9): 806-811, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31427765

RESUMEN

A fundamental bonding model in coordination and organometallic chemistry is the synergic, donor-acceptor interaction between a metal and a neutral π-acceptor ligand, in which the ligand σ donates to the metal, which π back-bonds to the ligand. This interaction typically involves a metal with an electron-rich, mid-, low- or even negative oxidation state and a ligand with a π* orbital. Here, we report that treatment of a uranium-carbene complex with an organoazide produces a uranium(V)-bis(imido)-dinitrogen complex, stabilized by a lithium counterion. This complex, which was isolated in a crystalline form, involves an electron-poor, high-oxidation-state uranium(V) 5f1 ion that is π back-bonded to the poor π-acceptor ligand dinitrogen. We propose that this is made possible by a combination of cooperative heterobimetallic uranium-lithium effects and the presence of suitable ancillary ligands that render the uranium ion unusually electron rich. This electron-poor back-bonding could have implications for the field of dinitrogen activation.

13.
Angew Chem Int Ed Engl ; 57(19): 5506-5511, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29534326

RESUMEN

Unprecedented silyl-phosphino-carbene complexes of uranium(IV) are presented, where before all covalent actinide-carbon double bonds were stabilised by phosphorus(V) substituents or restricted to matrix isolation experiments. Conversion of [U(BIPMTMS )(Cl)(µ-Cl)2 Li(THF)2 ] (1, BIPMTMS =C(PPh2 NSiMe3 )2 ) into [U(BIPMTMS )(Cl){CH(Ph)(SiMe3 )}] (2), and addition of [Li{CH(SiMe3 )(PPh2 )}(THF)]/Me2 NCH2 CH2 NMe2 (TMEDA) gave [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(µ-Cl)Li(TMEDA)(µ-TMEDA)0.5 ]2 (3) by α-hydrogen abstraction. Addition of 2,2,2-cryptand or two equivalents of 4-N,N-dimethylaminopyridine (DMAP) to 3 gave [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(Cl)][Li(2,2,2-cryptand)] (4) or [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(DMAP)2 ] (5). The characterisation data for 3-5 suggest that whilst there is evidence for 3-centre P-C-U π-bonding character, the U=C double bond component is dominant in each case. These U=C bonds are the closest to a true uranium alkylidene yet outside of matrix isolation experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...