RESUMEN
The commensal bacterium Faecalibacterium prausnitzii has unique anti-inflammatory properties, at least some of which have been attributed to its production of MAM, the Microbial Anti-inflammatory Molecule. Previous phylogenetic studies of F. prausnitzii strains have revealed the existence of various phylogroups. In this work, we address the question of whether MAMs from different phylogroups display distinct anti-inflammatory properties. We first performed wide-scale identification, classification, and phylogenetic analysis of MAM-like proteins encoded in different genomes of F. prausnitzii. When combined with a gene context analysis, this approach distinguished at least 10 distinct clusters of MAMs, providing evidence for functional diversity within this protein. We then selected 11 MAMs from various clusters and evaluated their anti-inflammatory capacities in vitro. A wide range of anti-inflammatory activity was detected. MAM from the M21/2 strain had the highest inhibitory effect (96% inhibition), while MAM from reference strain A2-165 demonstrated only 56% inhibition, and MAM from strain CNCM4541 was almost inactive. These results were confirmed in vivo in murine models of acute and chronic colitis. This study provides insights into the family of MAM proteins and generates clues regarding the choice of F. prausnitzii strains as probiotics for use in targeting chronic inflammatory diseases.
Asunto(s)
Proteínas Bacterianas/genética , Faecalibacterium prausnitzii/metabolismo , Filogenia , Probióticos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/uso terapéutico , Secuencia de Bases , Colitis/tratamiento farmacológico , Faecalibacterium prausnitzii/genética , Variación Genética , Genoma Bacteriano , Masculino , Ratones , Análisis de Secuencia de ADNRESUMEN
Alterations in brain/gut/microbiota axis are linked to Irritable Bowel Syndrome (IBS) physiopathology. Upon gastrointestinal infection, chronic abdominal pain and anxio-depressive comorbidities may persist despite pathogen clearance leading to Post-Infectious IBS (PI-IBS). This study assesses the influence of tryptophan metabolism, and particularly the microbiota-induced AhR expression, on intestinal homeostasis disturbance following gastroenteritis resolution, and evaluates the efficacy of IL-22 cytokine vectorization on PI-IBS symptoms. The Citrobacter rodentium infection model in C57BL6/J mice was used to mimic Enterobacteria gastroenteritis. Intestinal homeostasis was evaluated as low-grade inflammation, permeability, mucosa-associated microbiota composition, and colonic sensitivity. Cognitive performances and emotional state of animals were assessed using several tests. Tryptophan metabolism was analyzed by targeted metabolomics. AhR activity was evaluated using a luciferase reporter assay method. One Lactococcus lactis strain carrying an eukaryotic expression plasmid for murine IL-22 (L. lactisIL-22) was used to induce IL-22 production in mouse colonic mucosa. C. rodentium-infected mice exhibited persistent colonic hypersensitivity and cognitive impairments and anxiety-like behaviors after pathogen clearance. These post-infectious disorders were associated with low-grade inflammation, increased intestinal permeability, decrease of Lactobacillaceae abundance associated with the colonic layer, and increase of short-chain fatty acids (SCFAs). During post-infection period, the indole pathway and AhR activity were decreased due to a reduction of tryptophol production. Treatment with L. lactisIL-22 restored gut permeability and normalized colonic sensitivity, restored cognitive performances and decreased anxiety-like behaviors. Data from the video-tracking system suggested an upgrade of welfare for mice receiving the L.lactisIL-22 strain. Our findings revealed that AhR/IL-22 signaling pathway is altered in a preclinical PI-IBS model. IL-22 delivering alleviate PI-IBS symptoms as colonic hypersensitivity, cognitive impairments, and anxiety-like behaviors by acting on intestinal mucosa integrity. Thus, therapeutic strategies targeting this pathway could be developed to treat IBS patients suffering from chronic abdominal pain and associated well-being disorders.
Asunto(s)
Depresión/etiología , Interleucinas/metabolismo , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/psicología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Cognición , Depresión/genética , Depresión/metabolismo , Depresión/psicología , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Humanos , Interleucinas/genética , Intestinos/metabolismo , Intestinos/microbiología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/microbiología , Ratones , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril/genética , Interleucina-22RESUMEN
Metabolic disorders are an increasing concern in the industrialized world. Current research has shown a direct link between the composition of the gut microbiota and the pathogenesis of obesity and diabetes. In only a few weeks, an obesity-inducing diet can lead to increased gut permeability and microbial dysbiosis, which contributes to chronic inflammation in the gut and adipose tissues, and to the development of insulin resistance. In this review, we examine the interplay between gut inflammation, insulin resistance, and the gut microbiota, and discuss how some probiotic species can be used to modulate gut homeostasis. We focus primarily on Faecalibacterium prausnitzii, a highly abundant butyrate-producing bacterium that has been proposed both as a biomarker for the development of different gut pathologies and as a potential treatment due to its production of anti-inflammatory metabolites.