Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(23): 235102, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905687

RESUMEN

Multimachine empirical scaling predicts an extremely narrow heat exhaust layer in future high magnetic field tokamaks, producing high power densities that require mitigation. In the experiments presented, the width of this exhaust layer is nearly doubled using actuators to increase turbulent transport in the plasma edge. This is achieved in low collisionality, high confinement edge pedestals with their gradients limited by turbulent transport instead of large-scale, coherent instabilities. The exhaust heat flux profile width and divertor leg diffusive spreading both double as a high frequency band of turbulent fluctuations propagating in the electron diamagnetic direction doubles in amplitude. The results are quantitatively reproduced in electromagnetic XGC particle-in-cell simulations which show the heat flux carried by electrons emerges to broaden the heat flux profile, directly supported by Langmuir probe measurements.

2.
Nat Commun ; 15(1): 3990, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734685

RESUMEN

The path of tokamak fusion and International thermonuclear experimental reactor (ITER) is maintaining high-performance plasma to produce sufficient fusion power. This effort is hindered by the transient energy burst arising from the instabilities at the boundary of plasmas. Conventional 3D magnetic perturbations used to suppress these instabilities often degrade fusion performance and increase the risk of other instabilities. This study presents an innovative 3D field optimization approach that leverages machine learning and real-time adaptability to overcome these challenges. Implemented in the DIII-D and KSTAR tokamaks, this method has consistently achieved reactor-relevant core confinement and the highest fusion performance without triggering damaging bursts. This is enabled by advances in the physics understanding of self-organized transport in the plasma edge and machine learning techniques to optimize the 3D field spectrum. The success of automated, real-time adaptive control of such complex systems paves the way for maximizing fusion efficiency in ITER and beyond while minimizing damage to device components.

3.
Phys Rev Lett ; 129(20): 205001, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36461991

RESUMEN

Experiments on the DIII-D tokamak have identified a novel regime in which applied resonant magnetic perturbations (RMPs) increase the particle confinement and overall performance. This Letter details a robust range of counter-current rotation over which RMPs cause this density pump-in effect for high confinement (H mode) plasmas. The pump in is shown to be caused by a reduction of the turbulent transport and to be correlated with a change in the sign of the induced neoclassical transport. This novel reversal of the RMP induced transport has the potential to significantly improve reactor relevant, three-dimensional magnetic confinement scenarios.

4.
Rev Sci Instrum ; 93(10): 103503, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319373

RESUMEN

Electromagnetic pickup noise in the tokamak environment imposes an imminent challenge for measuring weak diagnostic photocurrents in the nA range. The diagnostic signal can be contaminated by an unknown mixture of crosstalk signals from coils powered by currents in the kA range. To address this issue, an algorithm for robust identification of linear multi-input single-output (MISO) systems has been developed. The MISO model describes the dynamic relationship between measured signals from power sources and observed signals in the diagnostic and allows for a precise subtraction of the noise component. The proposed method was tested on experimental diagnostic data from the DIII-D tokamak, and it has reduced noise by up to 20 dB in the 1-20 kHz range.

5.
Rev Sci Instrum ; 93(10): 103504, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319378

RESUMEN

Spectrally resolved passive Balmer-α (D-α, H-α) measurements from the DIII-D 16 channel edge main-ion charge exchange recombination system confirm the presence of higher energy neutrals ("thermal" neutrals) in addition to the cold neutrals that recycle off the walls in the edge region of DIII-D plasmas. Charge exchange between thermal ions and edge neutrals transfers energy and momentum between the populations giving rise to thermal neutrals with energies approximating the ions in the pedestal region. Multiple charge exchange events in succession allow an electron to effectively take a random walk, transferring from ion to ion, providing a pathway of increasing energy and velocity, permitting a neutral to get deeper into the plasma before a final ionization event that contributes to the ion and electron particle fueling. Spectrally resolved measurements provide information about the density and velocity distribution of these neutrals, which has been historically valuable for validating Monte Carlo neutral models, which include the multi stage charge exchange dynamics. Here, a multi-channel set of such measurements is used to specifically isolate the details of the thermal neutrals that are responsible for fueling inside the pedestal top. Being able to separate the thermal from the cold emission overcomes several challenges associated with optical filter-based neutral density measurements. The neutral dynamics, deeper fueling by the thermal neutrals, and spectral measurement are modeled with the FIDASIM Monte Carlo collisional radiative code, which also produces synthetic spectra with a shape that is in close agreement with the measurements. By scaling the number of neutrals in the simulation to match the intensity of the thermal emission, we show it is possible to obtain local neutral densities and ionization source rates.

6.
Rev Sci Instrum ; 92(3): 033523, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820041

RESUMEN

A one dimensional, absolutely calibrated pinhole camera system was installed on the DIII-D tokamak to measure edge Lyman-alpha (Ly-α) emission from hydrogen isotopes, which can be used to infer neutral density and ionization rate profiles. The system is composed of two cameras, each providing a toroidal fan of 20 lines of sight, viewing the plasma edge on the inboard and outboard side of DIII-D. The cameras' views lie in a horizontal plane 77 cm below the midplane. At its tangency radius, each channel provides a radial resolution of ∼2 cm full width at half maximum (FWHM) with a total coverage of 22 cm. Each camera consists of a rectangular pinhole, Ly-α reflective mirror, narrow-band Ly-α transmission filter, and a 20 channel AXUV photodetector. The combined mirror and transmission filter have a FWHM of 5 nm, centered near the Ly-α wavelength of 121.6 nm and is capable of rejecting significant, parasitic carbon-III (C-III) emission from intrinsic plasma impurities. To provide a high spatial resolution measurement in a compact footprint, the camera utilizes advanced engineering and manufacturing techniques including 3D printing, high stability mirror mounts, and a novel alignment procedure. Absolutely calibrated, spatially resolved Ly-α brightness measurements utilize a bright, isolated line with low parasitic surface reflections and enable quantitative comparison to modeling to study divertor neutral leakage, main chamber fueling, and radial particle transport.

7.
Rev Sci Instrum ; 92(3): 033522, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820112

RESUMEN

The LLAMA (Lyman-Alpha Measurement Apparatus) diagnostic was recently installed on the DIII-D tokamak [Rosenthal et al., Rev. Sci. Instrum. (submitted) (2020)]. LLAMA is a pinhole camera system with a narrow band Bragg mirror, a bandpass interference filter, and an absolute extreme ultraviolet photodiode detector array, which measures the Ly-α brightness in the toroidal direction on the inboard, high field side (HFS) and outboard, low field side (LFS). This contribution presents a setup and a procedure for an absolute calibration near the Ly-α line at 121.6 nm. The LLAMA in-vacuum components are designed as a compact, transferable setup that can be mounted in an ex situ vacuum enclosure that is equipped with an absolutely calibrated Ly-α source. The spectral purity and stability of the Ly-α source are characterized using a vacuum ultraviolet spectrometer, while the Ly-α source brightness is measured by a NIST-calibrated photodiode. The non-uniform nature of the Ly-α source emission was overcome by performing a calibration procedure that scans the Ly-α source position and employs a numerical optimization to determine the emission pattern. Nominal and measured calibration factors are determined and compared, showing agreement within their uncertainties. A first conversion of the measured signal obtained from DIII-D indicates that the Ly-α brightness on the HFS and LFS is on the order of 1020 Ph sr-1 m-2 s-1. The established calibration setup and procedure will be regularly used to re-calibrate the LLAMA during DIII-D vents to monitor possible degradation of optical components and detectors.

8.
Rev Sci Instrum ; 89(10): 10K121, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399718

RESUMEN

We present a device for controlled injection of a variety of materials in powder form. The system implements four independent feeder units, arranged to share a single vertical drop tube. Each unit consists of a 80 ml reservoir, coupled to a horizontal linear trough, where a layer of powder is advanced by piezo-electric agitation at a speed proportional to the applied voltage, until it falls into a drop tube. The dropper has been tested with a number of impurities of low (B, BN, C), intermediate (Si, SiC), and high Z (Sn) and a variety of microscopic structures (flakes, spheres, rocks) and sizes (5-200 µm). For low Z materials, drop rates ∼2-200 mg/s have been obtained showing good repeatability and uniformity. A calibrated light-emitting diode (LED)-based flowmeter allows measuring and monitoring the drop rate during operation. The fast time-response of the four feeders allows combination of steady and pulsed injections, providing a flexible tool for controlled-dose, real-time impurity injection in fusion plasmas.

9.
Rev Sci Instrum ; 89(10): 10D110, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399818

RESUMEN

Main-ion charge exchange recombination spectroscopy (MICER) uses the neutral beam induced D α spectrum to measure the local deuterium ion (D+) temperature, rotation, and density, as well as parameters related to the neutral beams, fast ions, and magnetic field. An edge MICER system consisting of 16 densely packed chords was recently installed on DIII-D, extending the MICER technique from the core to the pedestal and steep gradient region of H-mode plasmas where the D+ and commonly measured impurity ion properties can differ significantly. A combination of iterative collisional radiative modeling techniques and greatly accelerated spectral fitting allowed the extension of this diagnostic technique to the plasma edge where the steep gradients introduce significant diagnostic challenges. The importance of including the fast ion D α emission in the fit to the spectrum for the edge system is investigated showing that it is typically not important except for cases which can have significant fast ion fractions near the plasma edge such as QH-mode. Example profiles from an Ohmic L-mode and a high power ITER baseline case show large differences in the toroidal rotation of the two species near the separatrix including a strong co-current D+ edge rotation. The measurements and analysis demonstrate the state of the art in active spectroscopy and integrated modeling for diagnosing fusion plasmas and the importance of direct main ion measurements.

10.
Rev Sci Instrum ; 89(6): 063507, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960573

RESUMEN

Analysis of fast-ion D-alpha (FIDA) data on National Spherical Torus Experiment-Upgrade (NSTX-U) shows that the cold Dα line contaminates the FIDA baseline. The scattered light is comparable to the FIDA emission. A scattering correction is required to extract the FIDA signal. Two methods that relate the scattered light contamination to the intensity of the cold Dα line are employed. One method uses laboratory measurements with a calibration lamp; the other method uses data acquired during plasma operation and singular value decomposition analysis. After correction, both the FIDA spectra and spatial profile are in better agreement with theoretical predictions.

11.
Phys Rev Lett ; 110(26): 265008, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23848889

RESUMEN

The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/B∼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.

12.
Rev Sci Instrum ; 83(10): 10D304, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126831

RESUMEN

Solid state neutral particle analyzer (ssNPA) arrays are operated in current mode on the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). Compared with conventional pulse-counting NPAs, current-mode operation sacrifices energy resolution to obtain economical, high-bandwidth, pitch-angle resolved measurements. With the success from a new three-channel near-vertical-view current mode ssNPA on DIII-D, the apertures on an existing array on NSTX were expanded to increase the particle influx. The sightlines of both arrays intersect heating beams, enabling both active and passive charge exchange measurements. The spatial resolution at beam intersection is typically 5 cm on both devices. Directly deposited ultra-thin foils on the detector surface block stray photons below the energy of 1 keV and also set low energy threshold about 25 keV for deuterium particle detection. Oscillations in neutral flux produced by high frequency magnetohydrodynamics (MHD) instabilities are readily detected.

13.
Rev Sci Instrum ; 83(10): 10D903, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126907

RESUMEN

Fast-ion D(α) measurements are an application of visible charge-exchange recombination (CER) spectroscopy that provide information about the energetic ion population. Like other CER diagnostics, the standard intensity calibration is obtained with an integrating sphere during a vacuum vessel opening. An alternative approach is to create plasmas where the fast-ion population is known, then calculate the expected signals with a synthetic diagnostic code. The two methods sometimes agree well but are discrepant in other cases. Different background subtraction techniques and simultaneous measurements of visible bremsstrahlung and of beam emission provide useful checks on the calibrations and calculations.

14.
Rev Sci Instrum ; 81(10): 10D728, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21033921

RESUMEN

A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

15.
Phys Rev Lett ; 105(13): 135003, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-21230780

RESUMEN

The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak à Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.

16.
Phys Rev Lett ; 97(23): 235003, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17280210

RESUMEN

Bulk plasma toroidal rotation is observed to invert spontaneously from counter to cocurrent direction in TCV (Tokamak à Configuration Variable) Ohmically heated discharges, in low confinement mode, without momentum input. The inversion occurs in high current discharges, when the plasma electron density exceeds a well-defined threshold. The transition between the two rotational regimes has been studied by means of density ramps. The results provide evidence of a change of the balance of nondiffusive momentum fluxes in the core of a plasma without an external drive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...