Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 54(11): 2497-2513.e9, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34562377

RESUMEN

Innate-like T cell populations expressing conserved TCRs play critical roles in immunity through diverse developmentally acquired effector functions. Focusing on the prototypical lineage of invariant natural killer T (iNKT) cells, we sought to dissect the mechanisms and timing of fate decisions and functional effector differentiation. Utilizing induced expression of the semi-invariant NKT cell TCR on double positive thymocytes, an initially highly synchronous wave of iNKT cell development was triggered by brief homogeneous TCR signaling. After reaching a uniform progenitor state characterized by IL-4 production potential and proliferation, effector subsets emerged simultaneously, but then diverged toward different fates. While NKT17 specification was quickly completed, NKT1 cells slowly differentiated and expanded. NKT2 cells resembled maturing progenitors, which gradually diminished in numbers. Thus, iNKT subset diversification occurs in dividing progenitor cells without acute TCR input but utilizes multiple active cytokine signaling pathways. These data imply a two-step model of iNKT effector differentiation.


Asunto(s)
Citocinas/metabolismo , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Biomarcadores , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología
2.
Front Immunol ; 10: 841, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080448

RESUMEN

The CD1d-restricted Vα14 invariant NKT (iNKT) cell lineage in mice (Vα24 in humans) represents an evolutionary conserved innate-like immune cell type that recognizes glycolipid antigens. Because of their unique ability to promptly secrete copious amounts of both pro-inflammatory and anti-inflammatory cytokines, typically produced by different T helper cell types, iNKT cells are implicated in the regulation of various pathologic conditions such as infection, allergy, autoimmune disease, maintenance of transplantation tolerance, and cancer. This striking multifaceted role in immune regulation is correlated with the presence of multiple functionally distinct iNKT cell subsets that can be distinguished based on the expression of characteristic surface markers and transcription factors. However, to date it, remains largely unresolved how this puzzling diversity of iNKT cell functional subsets emerges and what factors dictate the type of effector cell differentiation during the thymic differentiation considering the mono-specific nature of their T cell receptor (TCR) and their selecting molecule CD1d. Here, we summarize recent findings focusing on the role of TCR-mediated signaling and discuss possible mechanisms that may influence the sub-lineage choice of iNKT cells.


Asunto(s)
Células T Asesinas Naturales/citología , Células T Asesinas Naturales/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Animales , Antígenos CD1d/metabolismo , Diferenciación Celular/inmunología , Citocinas/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo
3.
J Immunol ; 198(7): 2747-2759, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28188245

RESUMEN

NKT cells represent a small subset of glycolipid-recognizing T cells that are heavily implicated in human allergic, autoimmune, and malignant diseases. In the thymus, precursor cells recognize self-glycolipids by virtue of their semi-invariant TCR, which triggers NKT cell lineage commitment and maturation. During their development, NKT cells are polarized into the NKT1, NKT2, and NKT17 subsets, defined through their cytokine-secretion patterns and the expression of key transcription factors. However, we have largely ignored how the differentiation into the NKT cell subsets is regulated. In this article, we describe the mRNA-binding Roquin-1 and -2 proteins as central regulators of murine NKT cell fate decisions. In the thymus, T cell-specific ablation of the Roquin paralogs leads to a dramatic expansion of NKT17 cells, whereas peripheral mature NKT cells are essentially absent. Roquin-1/2-deficient NKT17 cells show exaggerated lineage-specific expression of nearly all NKT17-defining proteins tested. We show through mixed bone marrow chimera experiments that NKT17 polarization is mediated through cell-intrinsic mechanisms early during NKT cell development. In contrast, the loss of peripheral NKT cells is due to cell-extrinsic factors. Surprisingly, Roquin paralog-deficient NKT cells are, in striking contrast to conventional T cells, compromised in their ability to secrete cytokines. Altogether, we show that Roquin paralogs regulate the development and function of NKT cell subsets in the thymus and periphery.


Asunto(s)
Diferenciación Celular/inmunología , Células T Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Citometría de Flujo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...