Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0304033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38787868

RESUMEN

In this work, we determined that Treponema pallidum subsp. pallidum (TPA) DAL-1 (belonging to Nichols-like group of TPA strains) grew 1.53 (± 0.08) times faster compared to TPA Philadelphia 1 (SS14-like group) during in vitro cultivations. In longitudinal individual propagation in rabbit testes (n = 12, each TPA strain), infection with DAL-1 manifested clinical symptoms (induration, swelling, and erythema of testes) sooner than Philadelphia 1 infection, which resulted in a significantly shorter period of the experimental passages for DAL-1 (median = 15.0 and 23.5 days, respectively; p < 0.01). To minimize the confounding conditions during rabbit experiments, the growth characteristics of DAL-1 and Philadelphia 1 strains were determined during TPA co-infection of rabbit testes (n = 20, including controls). During two weeks of intratesticular co-infection, DAL-1 overgrew Philadelphia 1 in all twelve testes, regardless of inoculation ratio and dose (median of relative excess DAL-1 multiplication = 84.85×). Moreover, higher DAL-1 to Philadelphia 1 inoculum ratios appeared to increase differences in growth rates, suggesting direct competition between strains for available nutrients during co-infection. These experiments indicate important physiological differences between the two TPA strains and suggest growth differences between Nichols-like and SS14-like strains that are potentially linked to their virulence and pathogenicity.


Asunto(s)
Treponema pallidum , Animales , Conejos , Masculino , Testículo/microbiología , Testículo/metabolismo , Sífilis/microbiología , Sífilis/patología
2.
Microbiol Resour Announc ; 12(9): e0036323, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37548468

RESUMEN

The complete genome sequences of five Escherichia coli strains with probiotic attributes were determined, including strain A0 34/86, a component of the probiotic product Colinfant New Born, and strains H22, 582, B771, and B1172 with published probiotic potential. The size of sequenced genomes ranged from 5,092 to 5,408 kb.

3.
Front Microbiol ; 14: 1141619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125208

RESUMEN

Introduction: Pathogenic strains of Escherichia coli have been clearly identified as the causative agents of extraintestinal and diarrheal infections; however, the etiopathogenic role of E. coli in other conditions, including colorectal cancer, remains unclear. Methods: This study aimed to characterize mucosal E. coli isolates (n = 246) from 61 neoplasia patients and 20 healthy controls for the presence of 35 genetic determinants encoding known virulence factors. Results: Virulence determinants encoding invasin (ibeA), siderophore receptor (iroN), S-fimbriae (sfa), and genotoxin (usp) were more prevalent among E. coli isolated from patients with neoplasia compared to the control group (p < 0.05). In addition, the prevalence of these virulence determinants was increased in more advanced neoplasia stages (p adj < 0.0125). Compared to patients with advanced colorectal adenoma and carcinoma, the ibeA gene was rarely found in the control group and among patients with non-advanced adenoma (p < 0.05), indicating its potential as the advanced-neoplasia biomarker. Patients with neoplasia frequently had E. coli strains with at least one of the abovementioned virulence factors, whereby specific combinations of these virulence factors were found. Discussion: These findings suggest that E. coli strains isolated from patients with colorectal neoplasia possess several virulence factors, which could contribute to the development of neoplastic processes in the large intestine.

4.
J Bacteriol ; 205(1): e0031522, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36541812

RESUMEN

Fonticins are phage tail-like bacteriocins produced by the Gram-negative bacterium Pragia fontium from the family Budviciaceae. This bacterium produces contractile-type particles that adsorb on the surface of sensitive bacteria and penetrate the cell wall, probably during contraction, in a way similar to the type VI secretion system. We characterized the pore-forming activity of fonticins using both living cells and in vitro model membranes. Using a potassium leakage assay, we show that fonticins are able to permeabilize sensitive cells. On black lipid membranes, single-pore conductance is about 0.78 nS in 1 M NaCl and appears to be linearly dependent on the increasing molar strength of NaCl solution, which is a property of considerably large pores. In agreement with these findings, fonticins are not ion selective for Na+, K+, and Cl-. Polyethylene glycol 3350 (PEG 3350) molecules of about 3.5 nm in diameter can enter the fonticin pore lumen, whereas the larger molecules cannot pass the pore. The size of fonticin pores was confirmed by transmission electron microscopy. The terminal membrane-piercing complex of the fonticin tube probably creates a selective barrier restricting passage of macromolecules. IMPORTANCE Phage tail-like bacteriocins are now the subject of research as potent antibacterial agents due to their narrow host specificity and single-hit mode of action. In this work, we focused on the structure and mode of action of fonticins. According to some theories, related particles were initially adapted for passage of double-stranded DNA (dsDNA) molecules, but fonticins changed their function during the evolution; they are able to form large pores through the bacterial envelope of Gram-negative bacteria. As various pore-forming proteins are extensively used for nanopore sequencing and stochastic sensing, we decided to investigate the pore-forming properties of fonticin protein complexes on artificial lipid membranes. Our research revealed remarkable structural properties of these particles that may have a potential application as a nanodevice.


Asunto(s)
Bacteriocinas , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/metabolismo , Cloruro de Sodio/metabolismo , Membrana Celular/metabolismo , Bacteriocinas/metabolismo , Enterobacteriaceae
5.
Anal Chem ; 93(26): 9103-9110, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34156818

RESUMEN

Exploratory mass spectrometry-based metabolomics generates a plethora of features in a single analysis. However, >85% of detected features are typically false positives due to inefficient elimination of chimeric signals and chemical noise not relevant for biological and clinical data interpretation. The data processing is considered a bottleneck to unravel the translational potential in metabolomics. Here, we describe a systematic workflow to refine exploratory metabolomics data and reduce reported false positives. We applied the feature filtering workflow in a case/control study exploring common variable immunodeficiency (CVID). In the first stage, features were detected from raw liquid chromatography-mass spectrometry data by XCMS Online processing, blank subtraction, and reproducibility assessment. Detected features were annotated in metabolomics databases to produce a list of tentative identifications. We scrutinized tentative identifications' physicochemical properties, comparing predicted and experimental reversed-phase liquid chromatography (LC) retention time. A prediction model used a linear regression of 42 retention indices with the cLogP ranging from -6 to 11. The LC retention time probes the physicochemical properties and effectively reduces the number of tentatively identified metabolites, which are further submitted to statistical analysis. We applied the retention time-based analytical feature filtering workflow to datasets from the Metabolomics Workbench (www.metabolomicsworkbench.org), demonstrating the broad applicability. A subset of tentatively identified metabolites significantly different in CVID patients was validated by MS/MS acquisition to confirm potential CVID biomarkers' structures and virtually eliminate false positives. Our exploratory metabolomics data processing workflow effectively removes false positives caused by the chemical background and chimeric signals inherent to the analytical technique. It reduced the number of tentatively identified metabolites by 88%, from initially detected 6940 features in XCMS to 839 tentative identifications and streamlined consequent statistical analysis and data interpretation.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Biomarcadores , Cromatografía Liquida , Humanos , Reproducibilidad de los Resultados
6.
Front Immunol ; 12: 671239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054845

RESUMEN

Common variable immunodeficiency (CVID) is a clinically and genetically heterogeneous disorder with inadequate antibody responses and low levels of immunoglobulins including IgA that is involved in the maintenance of the intestinal homeostasis. In this study, we analyzed the taxonomical and functional metagenome of the fecal microbiota and stool metabolome in a cohort of six CVID patients without gastroenterological symptomatology and their healthy housemates. The fecal microbiome of CVID patients contained higher numbers of bacterial species and altered abundance of thirty-four species. Hungatella hathewayi was frequent in CVID microbiome and absent in controls. Moreover, the CVID metagenome was enriched for low-abundance genes likely encoding nonessential functions, such as bacterial motility and metabolism of aromatic compounds. Metabolomics revealed dysregulation in several metabolic pathways, mostly associated with decreased levels of adenosine in CVID patients. Identified features have been consistently associated with CVID diagnosis across the patients with various immunological characteristics, length of treatment, and age. Taken together, this initial study revealed expansion of bacterial diversity in the host immunodeficient conditions and suggested several bacterial species and metabolites, which have potential to be diagnostic and/or prognostic CVID markers in the future.


Asunto(s)
Clostridiaceae/fisiología , Inmunodeficiencia Variable Común/microbiología , Biología Computacional/métodos , Disbiosis/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Adenosina/metabolismo , Biodiversidad , Inmunodeficiencia Variable Común/genética , Disbiosis/genética , Heces/microbiología , Homeostasis , Humanos , Metabolómica , Metagenoma
7.
Appl Environ Microbiol ; 87(14): e0312120, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33962981

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) and Shiga toxin-producing E. coli (STEC) strains are the causative agents of severe foodborne diseases in both humans and animals. In this study, porcine pathogenic E. coli strains (n = 277) as well as porcine commensal strains (n = 188) were tested for their susceptibilities to 34 bacteriocin monoproducers to identify the most suitable bacteriocin types inhibiting porcine pathogens. Under in vitro conditions, the set of pathogenic E. coli strains was found to be significantly more susceptible to the majority of tested bacteriocins than commensal E. coli. Based on the production of bacteriocins with specific activity against pathogens, three potentially probiotic commensal E. coli strains of human origin were selected. These strains were found to be able to outcompete ETEC strains expressing F4 or F18 fimbriae in liquid culture and also decreased the severity and duration of diarrhea in piglets during experimental ETEC infection as well as pathogen numbers on the last day of in vivo experimentation. While the extents of the probiotic effect were different for each strain, the cocktail of all three strains showed the most pronounced beneficial effects, suggesting synergy between the tested E. coli strains. IMPORTANCE Increasing levels of antibiotic resistance among bacteria also increase the need for alternatives to conventional antibiotic treatment. Pathogenic Escherichia coli represents a major diarrheic infectious agent of piglets in their postweaning period; however, available measures to control these infections are limited. This study describes three novel E. coli strains producing antimicrobial compounds (bacteriocins) that actively inhibit a majority of toxigenic E. coli strains. The beneficial effect of three potentially probiotic E. coli strains was demonstrated under both in vitro and in vivo conditions. The novel probiotic candidates may be used as prophylaxis during piglets' postweaning period to overcome common infections caused by E. coli.


Asunto(s)
Toxinas Bacterianas , Bacteriocinas/uso terapéutico , Infecciones por Escherichia coli/prevención & control , Escherichia coli , Probióticos/uso terapéutico , Enfermedades de los Porcinos/prevención & control , Animales , Toxinas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Heces/microbiología , Porcinos , Enfermedades de los Porcinos/microbiología , Factores de Virulencia/genética
8.
Expert Rev Anti Infect Ther ; 19(3): 309-322, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32856960

RESUMEN

INTRODUCTION: The emergence and spread of antibiotic resistance among pathogenic bacteria drives the search for alternative antimicrobial therapies. Bacteriocins represent a potential alternative to antibiotic treatment. In contrast to antibiotics, bacteriocins are peptides or proteins that have relatively narrow spectra of antibacterial activities and are produced by a wide range of bacterial species. Bacteriocins of Escherichia coli are historically classified as microcins and colicins, and, until now, more than 30 different bacteriocin types have been identified and characterized. AREAS COVERED: We performed bibliographical searches of online databases to review the literature regarding bacteriocins produced by E. coli with respect to their occurrence, bacteriocin role in bacterial colonization and pathogenicity, and application of their antimicrobial effect. EXPERT OPINION: The potential use of bacteriocins for applications in human and animal medicine and the food industry includes (i) the use of bacteriocin-producing probiotic strains, (ii) recombinant production in plants and application in food, and (iii) application of purified bacteriocins.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Escherichia coli/metabolismo , Animales , Antibacterianos/biosíntesis , Antibacterianos/aislamiento & purificación , Bacteriocinas/biosíntesis , Bacteriocinas/aislamiento & purificación , Colicinas/biosíntesis , Colicinas/aislamiento & purificación , Colicinas/farmacología , Humanos , Probióticos/farmacología
9.
BMC Cancer ; 20(1): 39, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948419

RESUMEN

BACKGROUND: Optimal therapy for colorectal carcinoma (CRC), a frequently diagnosed malignancy, does not exist. Some of colicins and microcins, ribosomally synthesized peptides by gramnegative bacteria, have shown significant biological activity specifically against different cancer cells in vitro and in vivo conditions. The aim of this prospective study was to evaluate natural colicin and microcin production by large intestinal mucosal bacteria in each stage of colorectal neoplasia and in those with a history of colorectal neoplasia. METHODS: A total of 21 patients with non-advanced adenoma (non-a-A; 16/21 with current and 5/21 with history of non-a-A), 20 patients with advanced colorectal adenoma (a-A; 11/20 with current and 9/20 with history of a-A), 22 individuals with CRC (9/22 with current and 13/22 with history of CRC) and 20 controls were enrolled. Mucosal biopsies from the caecum, transverse colon and the rectum were taken during colonoscopy in each individual. Microbiological culture followed. Production of colicins and microcins was evaluated by PCR methods. RESULTS: A total of 239 mucosal biopsies were taken. Production of colicins and microcins was significantly more frequent in individuals with non-a-A, a-A and CRC compared to controls. No significant difference in colicin and microcin production was found between patients with current and previous non-a-A, a-A and CRC. Significantly more frequent production of colicins was observed in men compared to women at the stage of colorectal carcinoma. A later onset of increased production of microcins during the adenoma-carcinoma sequence has been observed in males compared to females. CONCLUSIONS: Strains isolated from large intestinal mucosa in patients with colorectal neoplasia produce colicins and microcins more frequently compared to controls. Bacteriocin production does not differ between patients with current and previous colorectal neoplasia. Fundamental differences in bacteriocin production have been confirmed between males and females.


Asunto(s)
Bacterias/metabolismo , Bacteriocinas/biosíntesis , Neoplasias Colorrectales/patología , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Biopsia , Femenino , Humanos , Masculino
10.
Probiotics Antimicrob Proteins ; 12(2): 343-350, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31069717

RESUMEN

Colinfant New Born (CNB) is an orally administered probiotic preparation containing the Escherichia coli strain A0 34/86, which is specially marketed for use in newborns and infants. Although the impact of different probiotics on the composition of the human gut microbiota has been previously described, the effects of E. coli probiotic consumption during infancy on the development of intestinal microbiota are not known. The effect of oral administration of CNB on the Enterobacteriaceae population was mapped using 16S rRNA gene sequencing in DNA samples isolated from the stools of one infant collected at 177 different time points during the first year of life. E. coli strains turnover was analyzed based on the detection of 26 genetic determinants, phylogroups, and pulsed-field gel electrophoresis (PFGE) analysis. Administration of CNB during the second and third month of life introduced the Escherichia genus to the infant's intestinal tract, and Escherichia became dominant among the Enterobacteriaceae family (p < 0.01). Genetic determinants, typical for probiotic E. coli A0 34/86 strain, were detected on the first day after application of CNB and persisted all year. In addition, nine transient E. coli strains were identified; these strains harbored different genetic determinants and showed different PFGE profiles. Transient strains were detected from 2 to 24 days in the stool samples. The first Escherichia colonizer originated from the application of the CNB probiotic preparation. Probiotic E. coli A0 34/86 successfully colonized the intestinal tract of an infant and became resident during the first year of life.


Asunto(s)
Escherichia coli , Microbioma Gastrointestinal , Intestinos/microbiología , Probióticos/administración & dosificación , Humanos , Lactante , Recién Nacido
11.
J Bacteriol ; 201(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31548276

RESUMEN

Colicin U is a protein produced by the bacterium Shigella boydii (serovars 1 and 8). It exerts antibacterial activity against strains of the enterobacterial genera Shigella and Escherichia Here, we report that colicin U forms voltage-dependent pores in planar lipid membranes; its single-pore conductance was found to be about 22 pS in 1 M KCl at pH 6 under 80 mV in asolectin bilayers. In agreement with the high degree of homology between their C-terminal domains, colicin U shares some pore characteristics with the related colicins A and B. Colicin U pores are strongly pH dependent, and as we deduced from the activity of colicin U in planar membranes at different protein concentrations, they have a monomeric pore structure. However, in contrast to related colicins, we observed a very low cationic selectivity of colicin U pores (1.5/1 of K+/Cl- at pH 6) along with their atypical voltage gating. Finally, using nonelectrolytes, we determined the inner diameter of the pores to be in the range of 0.7 to 1 nm, which is similar to colicin Ia, but with a considerably different inner profile.IMPORTANCE Currently, a dramatic increase in antibiotic resistance is driving researchers to find new antimicrobial agents. The large group of toxins called bacteriocins appears to be very promising from this point of view, especially because their narrow killing spectrum allows specific targeting against selected bacterial strains. Colicins are a subgroup of bacteriocins that act on Gram-negative bacteria. To date, some colicins are commercially used for the treatment of animals (1) and tested as a component of engineered species-specific antimicrobial peptides, which are studied for the potential treatment of humans (2). Here, we present a thorough single-molecule study of colicin U which leads to a better understanding of its mode of action. It extends the range of characterized colicins available for possible future medical applications.


Asunto(s)
Membrana Celular/metabolismo , Colicinas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Shigella boydii/metabolismo , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Permeabilidad , Cloruro de Potasio/farmacología
12.
Sci Rep ; 9(1): 11127, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366939

RESUMEN

Colicin production in Escherichia coli (E. coli) strains represents an important trait with regard to microbial survival and competition in the complex intestinal environment. A novel colicin type, colicin Z (26.3 kDa), was described as a product of an original producer, extraintestinal E. coli B1356 strain, isolated from the anorectal abscess of a 17 years-old man. The 4,007 bp plasmid (pColZ) was completely sequenced and colicin Z activity (cza) and colicin Z immunity (czi) genes were identified. The cza and czi genes are transcribed in opposite directions and encode for 237 and 151 amino acid-long proteins, respectively. Colicin Z shows a narrow inhibitory spectrum, being active only against enteroinvasive E. coli (EIEC) and Shigella strains via CjrC receptor recognition and CjrB- and ExbB-, ExbD-mediated colicin translocation. All tested EIEC and Shigella strains isolated between the years 1958-2010 were sensitive to colicin Z. The lethal effect of colicin Z was found to be directed against cell wall peptidoglycan (PG) resulting in PG degradation, as revealed by experiments with Remazol Brilliant Blue-stained purified peptidoglycans and with MALDI-TOF MS analyses of treated PG. Colicin Z represents a new class of colicins that is structurally and functionally distinct from previously studied colicin types.


Asunto(s)
Colicinas/genética , Escherichia coli/genética , Shigella/genética , Adolescente , Secuencia de Bases , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Plásmidos/genética
13.
Front Immunol ; 10: 1914, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456808

RESUMEN

Common Variable Immunodeficiency (CVID) is the most frequent symptomatic immune disorder characterized by reduced serum immunoglobulins. Patients often suffer from infectious and serious non-infectious complications which impact their life tremendously. The monogenic cause has been revealed in a minority of patients so far, indicating the role of multiple genes and environmental factors in CVID etiology. Using 16S and ITS rRNA amplicon sequencing, we analyzed the bacterial and fungal gut microbiota, respectively, in a group of 55 participants constituting of CVID patients and matched healthy controls including 16 case-control pairs living in the same household, to explore possible associations between gut microbiota composition and disease phenotype. We revealed less diverse and significantly altered bacterial but not fungal gut microbiota in CVID patients, which additionally appeared to be associated with a more severe disease phenotype. The factor of sharing the same household impacted both bacterial and fungal microbiome data significantly, although not as strongly as CVID diagnosis in bacterial assessment. Overall, our results suggest that gut bacterial microbiota is altered in CVID patients and may be one of the missing environmental drivers contributing to some of the symptoms and disease severity. Paired samples serving as controls will provide a better resolution between disease-related dysbiosis and other environmental confounders in future studies.


Asunto(s)
Bacterias/inmunología , Inmunodeficiencia Variable Común/microbiología , Hongos/inmunología , Microbioma Gastrointestinal , Micobioma , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Estudios de Casos y Controles , Inmunodeficiencia Variable Común/inmunología , Salud de la Familia , Heces/microbiología , Femenino , Hongos/clasificación , Hongos/genética , Microbioma Gastrointestinal/inmunología , Estado de Salud , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Masculino , Persona de Mediana Edad
14.
Front Microbiol ; 10: 821, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057522

RESUMEN

Our understanding of human gut microbiota in health and disease depends on accurate and reproducible microbial data acquisition. The critical step in this process is to apply an appropriate methodology to extract microbial DNA, since biases introduced during the DNA extraction process may result in inaccurate microbial representation. In this study, we attempted to find a DNA extraction protocol which could be effectively used to analyze both the bacterial and fungal community. We evaluated the effect of five DNA extraction methods (QIAamp DNA Stool Mini Kit, PureLinkTM Microbiome DNA Purification Kit, ZR Fecal DNA MiniPrepTM Kit, NucleoSpin® DNA Stool Kit, and IHMS protocol Q) on bacterial and fungal gut microbiome recovery using (i) a defined system of germ-free mice feces spiked with bacterial or fungal strains, and (ii) non-spiked human feces. In our experimental setup, we confirmed that the examined methods significantly differed in efficiency and quality, which affected the identified stool microbiome composition. In addition, our results indicated that fungal DNA extraction might be prone to be affected by reagent/kit contamination, and thus an appropriate blank control should be included in mycobiome research. Overall, standardized IHMS protocol Q, recommended by the International Human Microbiome Consortium, performed the best when considering all the parameters analyzed, and thus could be applied not only in bacterial, but also in fungal microbiome research.

15.
Vet Microbiol ; 232: 121-127, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31030835

RESUMEN

Enterotoxigenic and Shiga-toxigenic Escherichia coli (i.e., ETEC and STEC) are important causative agents of human and animal diseases. In humans, infections range from mild diarrhea to severe life-threating conditions, while infections of piglets result in lower weight gain and higher pig mortality with the accompanying significant economic losses. In this study, frequencies of four phylogenetic groups, fourteen virulence- and thirty bacteriocin determinants were analyzed in a set of 443 fecal E. coli isolates from diseased pigs and compared to a previously characterized set of 1283 human fecal E. coli isolates collected in the same geographical region. In addition, these characteristics were compared among ETEC, STEC, and non-toxigenic porcine E. coli isolates. Phylogenetic group A was prevalent among porcine pathogenic E. coli isolates, whereas the frequency of phylogroup B2, adhesion/invasion (fimA, pap, sfa, afaI, ial, ipaH, and pCVD432) and iron acquisition (aer and iucC) determinants were less frequent compared to human fecal isolates. Additionally, porcine isolates differed from human isolates relative to the spectrum of produced bacteriocins. While human fecal isolates encoded colicins and microcins with a similar prevalence, porcine pathogenic E. coli isolates produced predominantly colicins (94% of isolates); especially colicins B (42.6%), M (40.1%), and Ib (34.0%), which are encoded on large conjugative plasmids. The observed high prevalence of these colicin determinants suggests the importance of large colicinogenic plasmids and/or the importance of colicin production in intestinal inflammatory conditions.


Asunto(s)
Bacteriocinas/genética , Colicinas/genética , Escherichia coli Enterotoxigénica/patogenicidad , Escherichia coli Shiga-Toxigénica/patogenicidad , Animales , Adhesión Bacteriana , Proteínas Portadoras/genética , Diarrea/microbiología , Escherichia coli Enterotoxigénica/genética , Proteínas de Escherichia coli/genética , Heces/microbiología , Proteínas Fimbrias/genética , Tracto Gastrointestinal/microbiología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Hierro/metabolismo , Filogenia , Plásmidos , Reacción en Cadena de la Polimerasa , Escherichia coli Shiga-Toxigénica/genética , Porcinos , Simbiosis , Factores de Virulencia/genética
16.
Proc Natl Acad Sci U S A ; 116(10): 4316-4325, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782830

RESUMEN

Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.


Asunto(s)
Cilios/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Sistemas CRISPR-Cas , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Ratones Noqueados , Modelos Animales , Simulación del Acoplamiento Molecular , Células 3T3 NIH , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal
17.
Sci Rep ; 8(1): 12242, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115964

RESUMEN

Yersiniosis belongs to the common foodborne diseases around the world, and frequently manifests as diarrhea that can be treated with probiotics. Colicin FY is an antibacterial agent produced by bacteria and it is capable of specific growth inhibition of Yersinia enterocolitica, the causative agent of gastrointestinal yersiniosis. In this study, recombinant E. coli producing colicin FY were constructed, using both known probiotic strains EcH22 and EcColinfant, and the newly isolated murine strains Ec1127 and Ec1145. All E. coli strains producing colicin FY inhibited growth of pathogenic Y. enterocolitica during co-cultivation in vitro. In dysbiotic mice treated with streptomycin, E. coli strains producing colicin FY inhibited progression of Y. enterocolitica infections. This growth inhibition was not observed in mice with normal gut microflora, likely due to insufficient colonization capacity of E. coli strains and/or due to spatial differences in intestinal niches. Isogenic Y. enterocolitica producing colicin FY was constructed and shown to inhibit pathogenic Y. enterocolitica in mice with normal microflora. Evidence of in vivo antimicrobial activity of colicin FY may have utility in the treatment of Y. enterocolitica infections.


Asunto(s)
Colicinas/metabolismo , Yersinia enterocolitica/fisiología , Animales , ADN Recombinante/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/fisiología , Intestinos/microbiología , Ratones
18.
Int J Med Microbiol ; 308(5): 498-504, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29735381

RESUMEN

A set of 178 Escherichia coli isolates taken from patients with inflammatory bowel disease (IBD) was analyzed for bacteriocin production and tested for the prevalence of 30 bacteriocin and 22 virulence factor determinants. Additionally, E. coli phylogenetic groups were also determined. Pulsed-field gel electrophoresis (PFGE) was used for exclusion of clonal character of isolates. Results were compared to data from a previously published analysis of 1283 fecal commensal E. coli isolates. The frequency of bacteriocinogenic isolates (66.9%) was significantly higher in IBD E. coli compared to fecal commensal E. coli isolates (54.2%, p < 0.01). In the group of IBD E. coli isolates, a higher prevalence of determinants for group B colicins (i.e., colicins B, D, Ia, Ib, M, and 5/10) (p < 0.01), including a higher prevalence of the colicin B determinant (p < 0.01) was found. Virulence factor determinants encoding fimbriae (fimA, 91.0%; pap, 27.5%), cytotoxic necrotizing factor (cnf1, 11.2%), aerobactin synthesis (aer, 43.3%), and the locus associated with invasivity (ial, 9.0%) were more prevalent in IBD E. coli (p < 0.05 for all five determinants). E. coli isolates from IBD mucosal biopsies were more frequently bacteriocinogenic (84.6%, p < 0.01) compared to fecal IBD isolates and fecal commensal E. coli. PFGE analysis revealed clusters specific for IBD E. coli isolates (n = 11), for fecal isolates (n = 13), and clusters containing both IBD and fecal isolates (n = 10). ExPEC (Extraintestinal Pathogenic E. coli) virulence and colicin determinants appear to be important characteristics of IBD E. coli isolates, especially the E. coli isolates obtained directly from biopsy samples.


Asunto(s)
Bacteriocinas/metabolismo , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Escherichia coli/aislamiento & purificación , Escherichia coli Patógena Extraintestinal/patogenicidad , Microbioma Gastrointestinal/fisiología , Toxinas Bacterianas/genética , Electroforesis en Gel de Campo Pulsado , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli Patógena Extraintestinal/aislamiento & purificación , Proteínas Fimbrias/genética , Humanos , Oxo-Ácido-Liasas/genética
19.
J Vet Med Sci ; 80(1): 138-146, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29249728

RESUMEN

Escherichia albertii is a recently discovered species with a limited number of well characterized strains. The aim of this study was to characterize four of the E. albertii strains, which were among 41 identified Escherichia strains isolated from the feces of living animals on James Ross Island, Antarctica, and Isla Magdalena, Patagonia. Sequencing of 16S rDNA, automated ribotyping, and rep-PCR were used to identify the four E. albertii isolates. Phylogenetic analyses based on multi-locus sequence typing showed these isolates to be genetically most similar to the members of E. albertii phylogroup G3. These isolates encoded several virulence factors including those, which are characteristic of E. albertii (cytolethal distending toxin and intimin) as well as bacteriocin determinants that typically have a very low prevalence in E. coli strains (D, E7). Moreover, E. albertii protein extracts caused cell cycle arrest in human cell line A375, probably because of cytolethal distending toxin activity.


Asunto(s)
Escherichia/metabolismo , Animales , Regiones Antárticas , Charadriiformes/microbiología , Chile , Electroforesis en Gel de Campo Pulsado/veterinaria , Escherichia/genética , Escherichia/aislamiento & purificación , Heces/microbiología , Tipificación de Secuencias Multilocus/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , ARN Ribosómico 16S/genética , Ribotipificación/veterinaria , Phocidae/microbiología , Spheniscidae/microbiología
20.
Genome Announc ; 5(19)2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28495765

RESUMEN

A temperate phage, SEN8, having a broad activity against pathogenic Salmonella serovars, was isolated from Salmonella enterica subsp. salamae strain Sen8. The complete genome sequence of phage SEN8 was determined (35,203 bp) and showed relatedness to P2-like phages (Salmonella phages Fels-2 and RE-2010).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...