Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cancer ; 130(5): 683-691, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905752

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations are the third most common EGFR mutations in patients with non-small cell lung cancer (NSCLC) and are associated with primary resistance to EGFR tyrosine kinase inhibitors (TKIs). There is evidence of activity of combining EGFR TKIs with monoclonal antibodies. This study reports on the efficacy and safety of afatinib in combination with cetuximab. METHODS: In this single-arm phase 2 trial, patients with advanced NSCLC harboring an EGFR ex20ins mutation were treated with afatinib 40 mg once daily in combination with cetuximab 500 mg/m2 every 2 weeks. The primary end point was disease control rate (DCR) at 18 weeks of treatment. RESULTS: Thirty-seven patients started treatment, with a median age of 65 years (range, 40-80 years), 78% female, and 95% White. The study achieved its primary end point with a DCR of 54% at 18 weeks, an overall response rate (ORR) of 43%, and a 32% confirmed ORR. Best responses were partial (n = 16), stable (n = 16), progressive disease (n = 2), or not evaluable (n = 3). Median progression-free survival was 5.5 months (95% CI, 3.7-8.3 months) and median overall survival was 16.8 months (95% CI, 10.7-25.8 months). The most common treatment-related adverse events (TRAEs) were diarrhea (70%), rash (65%), dry skin (59%), paronychia (54%), and erythema (43%). Grade 3 TRAEs were reported in 54% of all patients. CONCLUSIONS: Combination treatment with afatinib and cetuximab demonstrated antitumor activity with a DCR of 54% at 18 weeks and a 32% confirmed ORR. Toxicity was significant, although manageable, after dose reduction.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Afatinib/uso terapéutico , Cetuximab/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Exones , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos
2.
Clin Cancer Res ; 30(4): 814-823, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38088895

RESUMEN

PURPOSE: Because PD-1 blockade is only effective in a minority of patients with advanced-stage non-small cell lung cancer (NSCLC), biomarkers are needed to guide treatment decisions. Tumor infiltration by PD-1T tumor-infiltrating lymphocytes (TIL), a dysfunctional TIL pool with tumor-reactive capacity, can be detected by digital quantitative IHC and has been established as a novel predictive biomarker in NSCLC. To facilitate translation of this biomarker to the clinic, we aimed to develop a robust RNA signature reflecting a tumor's PD-1T TIL status. EXPERIMENTAL DESIGN: mRNA expression analysis using the NanoString nCounter platform was performed in baseline tumor samples from 41 patients with advanced-stage NSCLC treated with nivolumab that were selected on the basis of PD-1T TIL infiltration by IHC. Samples were included as a training cohort (n = 41) to develop a predictive gene signature. This signature was independently validated in a second cohort (n = 42). Primary outcome was disease control at 12 months (DC 12 m), and secondary outcome was progression-free and overall survival. RESULTS: Regularized regression analysis yielded a signature using 12 out of 56 differentially expressed genes between PD-1T IHC-high tumors from patients with DC 12 m and PD-1T IHC-low tumors from patients with progressive disease (PD). In the validation cohort, 6/6 (100%) patients with DC 12 m and 23/36 (64%) with PD were correctly classified with a negative predictive value (NPV) of 100% and a positive predictive value of 32%. CONCLUSIONS: The PD-1T mRNA signature showed a similar high sensitivity and high NPV as the digital IHC quantification of PD-1T TIL. This finding provides a straightforward approach allowing for easy implementation in a routine diagnostic clinical setting.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/uso terapéutico , Resultado del Tratamiento , ARN Mensajero/genética , Linfocitos Infiltrantes de Tumor/metabolismo , Antígeno B7-H1/metabolismo
3.
Genet Med ; 26(2): 101032, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006283

RESUMEN

PURPOSE: Genome sequencing (GS) enables comprehensive molecular analysis of tumors and identification of hereditary cancer predisposition. According to guidelines, directly determining pathogenic germline variants (PGVs) requires pretest genetic counseling, which is cost-ineffective. Referral for genetic counseling based on tumor variants alone could miss relevant PGVs and/or result in unnecessary referrals. METHODS: We validated GS for detection of germline variants and simulated 3 strategies using paired tumor-normal GS data of 937 metastatic patients. In strategy-1, genetic counseling before tumor testing allowed direct PGV analysis. In strategy-2 and -3, germline testing and referral for post-test genetic counseling is based on tumor variants using Dutch (strategy-2) or Europen Society for Medical Oncology (ESMO) Precision Medicine Working Group (strategy-3) guidelines. RESULTS: In strategy-1, PGVs would be detected in 50 patients (number-needed-to counsel; NTC = 18.7). In strategy-2, 86 patients would have been referred for genetic counseling and 43 would have PGVs (NTC = 2). In strategy-3, 94 patients would have been referred for genetic counseling and 32 would have PGVs (NTC = 2.9). Hence, 43 and 62 patients, respectively, were unnecessarily referred based on a somatic variant. CONCLUSION: Both post-tumor test counseling strategies (2 and 3) had significantly lower NTC, and strategy-2 had the highest PGV yield. Combining pre-tumor test mainstreaming and post-tumor test counseling may maximize the clinically relevant PGV yield and minimize unnecessary referrals.


Asunto(s)
Asesoramiento Genético , Neoplasias , Humanos , Pruebas Genéticas , Carga de Trabajo , Neoplasias/diagnóstico , Neoplasias/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética
4.
Nat Protoc ; 19(3): 700-726, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38092944

RESUMEN

Two decades after the genomics revolution, oncology is rapidly transforming into a genome-driven discipline, yet routine cancer diagnostics is still mainly microscopy based, except for tumor type-specific predictive molecular tests. Pathology laboratories struggle to quickly validate and adopt biomarkers identified by genomics studies of new targeted therapies. Consequently, clinical implementation of newly approved biomarkers suffers substantial delays, leading to unequal patient access to these therapies. Whole-genome sequencing (WGS) can successfully address these challenges by providing a stable molecular diagnostic platform that allows detection of a multitude of genomic alterations in a single cost-efficient assay and facilitating rapid implementation, as well as by the development of new genomic biomarkers. Recently, the Whole-genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE) study demonstrated that WGS is a feasible and clinically valid technique in routine clinical practice with a turnaround time of 11 workdays. As a result, WGS was successfully implemented at the Netherlands Cancer Institute as part of routine diagnostics in January 2021. The success of implementing WGS has relied on adhering to a comprehensive protocol including recording patient information, sample collection, shipment and storage logistics, sequencing data interpretation and reporting, integration into clinical decision-making and data usage. This protocol describes the use of fresh-frozen samples that are necessary for WGS but can be challenging to implement in pathology laboratories accustomed to using formalin-fixed paraffin-embedded samples. In addition, the protocol outlines key considerations to guide uptake of WGS in routine clinical care in hospitals worldwide.


Asunto(s)
Neoplasias , Humanos , Flujo de Trabajo , Secuenciación Completa del Genoma/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Genómica , Biomarcadores
5.
J Exp Med ; 220(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920329

RESUMEN

Neoadjuvant ipilimumab + nivolumab has demonstrated high pathologic response rates in stage III melanoma. Patients with low intra-tumoral interferon-γ (IFN-γ) signatures are less likely to benefit. We show that domatinostat (a class I histone deacetylase inhibitor) addition to anti-PD-1 + anti-CTLA-4 increased the IFN-γ response and reduced tumor growth in our murine melanoma model, rationalizing evaluation in patients. To stratify patients into IFN-γ high and low cohorts, we developed a baseline IFN-γ signature expression algorithm, which was prospectively tested in the DONIMI trial. Patients with stage III melanoma and high intra-tumoral IFN-γ scores were randomized to neoadjuvant nivolumab or nivolumab + domatinostat, while patients with low IFN-γ scores received nivolumab + domatinostat or ipilimumab + nivolumab + domatinostat. Domatinostat addition to neoadjuvant nivolumab ± ipilimumab did not delay surgery but induced unexpected severe skin toxicity, hampering domatinostat dose escalation. At studied dose levels, domatinostat addition did not increase treatment efficacy. The baseline IFN-γ score adequately differentiated patients who were likely to benefit from nivolumab alone versus patients who require other therapies.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Animales , Ratones , Nivolumab/efectos adversos , Ipilimumab/uso terapéutico , Ipilimumab/efectos adversos , Terapia Neoadyuvante , Interferón gamma , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma Cutáneo Maligno
6.
Cancers (Basel) ; 14(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406555

RESUMEN

Tissue biopsies can be burdensome and are only effective in 10-30% of patients with metastasized non-small-cell lung cancer (mNSCLC). Next-generation sequencing (NGS) on cell-free DNA (cfDNA) might be an attractive alternative. We evaluated the costs, throughput time, and diagnostic yield of two diagnostic scenarios with tissue and cfDNA for mNSCLC patients, compared to diagnostics based on tissue biopsy alone. Data were retrieved from 209 stage IV NSCLC patients included in 10 hospitals in the Netherlands in the observational Lung cancer Early Molecular Assessment (LEMA) trial. Discrete event simulation was developed to compare three scenarios, using LEMA data as input where possible: (1) diagnostics with "tissue only"; (2) diagnostics with "cfDNA first", and subsequent tissue biopsy if required (negative for EGFR, BRAF ALK, ROS1); (3) cfDNA if tissue biopsy failed ("tissue first"). Scenario- and probabilistic analyses were performed to quantify uncertainty. In scenario 1, 84% (Credibility Interval [CrI] 70-94%) of the cases had a clinically relevant test result, compared to 93% (CrI 86-98%) in scenario 2, and 93% (CrI 86-99%) in scenario 3. The mean throughput time was 20 days (CrI 17-23) pp in scenario 1, 9 days (CrI 7-11) in scenario 2, and 19 days (CrI 16-22) in scenario 3. Mean costs were €2304 pp (CrI €2067-2507) in scenario 1, compared to €3218 (CrI €3071-3396) for scenario 2, and €2448 (CrI €2382-2506) for scenario 3. Scenarios 2 and 3 led to a reduction in tissue biopsies of 16% and 9%, respectively. In this process-based simulation analysis, the implementation of cfDNA for patients with mNSCLC resulted in faster completion of molecular profiling with more identified targets, with marginal extra costs in scenario 3.

7.
Cancers (Basel) ; 14(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35053600

RESUMEN

With more than 70 different histological sarcoma subtypes, accurate classification can be challenging. Although characteristic genetic events can largely facilitate pathological assessment, large-scale molecular profiling generally is not part of regular diagnostic workflows for sarcoma patients. We hypothesized that whole genome sequencing (WGS) optimizes clinical care of sarcoma patients by detection of diagnostic and actionable genomic characteristics, and of underlying hereditary conditions. WGS of tumor and germline DNA was incorporated in the diagnostic work-up of 83 patients with a (presumed) sarcomas in a tertiary referral center. Clinical follow-up data were collected prospectively to assess impact of WGS on clinical decision making. In 12/83 patients (14%), the genomic profile led to revision of cancer diagnosis, with change of treatment plan in eight. All twelve patients had undergone multiple tissue retrieval procedures and immunohistopathological assessments by regional and expert pathologists prior to WGS analysis. Actionable biomarkers with therapeutic potential were identified for 30/83 patients. Pathogenic germline variants were present in seven patients. In conclusion, unbiased genomic characterization with WGS identifies genomic biomarkers with direct clinical implications for sarcoma patients. Given the diagnostic complexity and high unmet need for new treatment opportunities in sarcoma patients, WGS can be an important extension of the diagnostic arsenal of pathologists.

8.
PLoS One ; 16(12): e0262198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972191

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with a 5% 5-year survival rate for metastatic disease, yet with limited therapeutic advancements due to insufficient understanding of and inability to accurately capture high-risk CRC patients who are most likely to recur. We aimed to improve high-risk classification by identifying biological pathways associated with outcome in adjuvant stage II/III CRC. METHODS AND FINDINGS: We included 1062 patients with stage III or high-risk stage II colon carcinoma from the prospective three-arm randomized phase 3 AVANT trial, and performed expression profiling to identify a prognostic signature. Data from validation cohort GSE39582, The Cancer Genome Atlas, and cell lines were used to further validate the prognostic biology. Our retrospective analysis of the adjuvant AVANT trial uncovered a prognostic signature capturing three biological functions-stromal, proliferative and immune-that outperformed the Consensus Molecular Subtypes (CMS) and recurrence prediction signatures like Oncotype Dx in an independent cohort. Importantly, within the immune component, high granzyme B (GZMB) expression had a significant prognostic impact while other individual T-effector genes were less or not prognostic. In addition, we found GZMB to be endogenously expressed in CMS2 tumor cells and to be prognostic in a T cell independent fashion. A limitation of our study is that these results, although robust and derived from a large dataset, still need to be clinically validated in a prospective study. CONCLUSIONS: This work furthers our understanding of the underlying biology that propagates stage II/III CRC disease progression and provides scientific rationale for future high-risk stratification and targeted treatment evaluation in biomarker defined subpopulations of resectable high-risk CRC. Our results also shed light on an alternative GZMB source with context-specific implications on the disease's unique biology.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Granzimas/fisiología , Transcriptoma , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Neoplasias Colorrectales/mortalidad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Granzimas/química , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Estudios Retrospectivos , Riesgo , Linfocitos T/metabolismo , Resultado del Tratamiento
9.
JCO Precis Oncol ; 52021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34632253

RESUMEN

Comprehensive molecular profiling (CMP) plays an essential role in clinical decision making in metastatic non-small-cell lung cancer (mNSCLC). Circulating tumor DNA (ctDNA) analysis provides possibilities for molecular tumor profiling. In this study, we aim to explore the additional value of centralized ctDNA profiling next to current standard-of-care protocolled tissue-based molecular profiling (SoC-TMP) in the primary diagnostic setting of mNSCLC in the Netherlands. METHODS: Pretreatment plasma samples from 209 patients with confirmed mNSCLC were analyzed retrospectively using the NGS AVENIO ctDNA Targeted Kit (Roche Diagnostics, Basel, Switzerland) and compared with paired prospective pretreatment tissue-based molecular profiling from patient records. The AVENIO panel is designed to detect single-nucleotide variants, copy-number variations, insertions or deletions, and tyrosine kinase fusion in 17 genes. RESULTS: Potentially targetable drivers were detected with SoC-TMP alone in 34.4% of patients. Addition of clonal hematopoiesis of indeterminate potential-corrected, plasma-based CMP increased this to 39.7% (P < .001). Concordance between SoC-TMP and plasma-CMP was 86.6% for potentially targetable drivers. Clinical sensitivity of plasma-CMP was 75.2% for any oncogenic driver. Specificity and positive predictive value were more than 90% for all oncogenic drivers. CONCLUSION: Plasma-CMP is a reliable tool in the primary diagnostic setting, although it cannot fully replace SoC-TMP. Complementary profiling by combined SoC-TMP and plasma-CMP increased the proportion of patients who are eligible for targeted treatment.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/genética , Neoplasias Pulmonares/genética , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/aislamiento & purificación , Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Países Bajos , Estudios Prospectivos
10.
Ann Intern Med ; 174(9): 1224-1231, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280333

RESUMEN

BACKGROUND: The fecal immunochemical test (FIT) is used in colorectal cancer (CRC) screening, yet it leaves room for improvement. OBJECTIVE: To develop a multitarget FIT (mtFIT) with better diagnostic performance than FIT. DESIGN: Diagnostic test accuracy study. SETTING: Colonoscopy-controlled series. PARTICIPANTS: Persons (n = 1284) from a screening (n = 1038) and referral (n = 246) population were classified by their most advanced lesion (CRC [n = 47], advanced adenoma [n = 135], advanced serrated polyp [n = 30], nonadvanced adenoma [n = 250], and nonadvanced serrated polyp [n = 53]), along with control participants (n = 769). MEASUREMENTS: Antibody-based assays were developed and applied to leftover FIT material. Classification and regression tree (CART) analysis was applied to biomarker concentrations to identify the optimal combination for detecting advanced neoplasia. Performance of this combination, the mtFIT, was cross-validated using a leave-one-out approach and compared with FIT at equal specificity. RESULTS: The CART analysis showed a combination of hemoglobin, calprotectin, and serpin family F member 2-the mtFIT-to have a cross-validated sensitivity for advanced neoplasia of 42.9% (95% CI, 36.2% to 49.9%) versus 37.3% (CI, 30.7% to 44.2%) for FIT (P = 0.025), with equal specificity of 96.6%. In particular, cross-validated sensitivity for advanced adenomas increased from 28.1% (CI, 20.8% to 36.5%) to 37.8% (CI, 29.6% to 46.5%) (P = 0.006). On the basis of these results, early health technology assessment indicated that mtFIT-based screening could be cost-effective compared with FIT. LIMITATION: Study population is enriched with persons from a referral population. CONCLUSION: Compared with FIT, the mtFIT showed better diagnostic accuracy in detecting advanced neoplasia because of an increased detection of advanced adenomas. Moreover, early health technology assessment indicated that these results provide a sound basis to pursue further development of mtFIT as a future test for population-based CRC screening. A prospective screening trial is in preparation. PRIMARY FUNDING SOURCE: Stand Up to Cancer/Dutch Cancer Society, Dutch Digestive Foundation, and HealthHolland.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Pruebas Diagnósticas de Rutina/normas , Heces/química , Tamizaje Masivo/instrumentación , Anciano , Biomarcadores de Tumor/química , Colonoscopía , Detección Precoz del Cáncer , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...