RESUMEN
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of Gonadotropin-releasing Hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, Neurokinin B (NKB), and Dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17ß-estradiol (E2) reduces peptide expression but increases Vglut2 mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current and that contribute to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of Canonical Transient Receptor Potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When TRPC5 channels in Kiss1ARH neurons were deleted using CRISPR, the slow excitatory postsynaptic potential (sEPSP) was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of the Kiss1ARH neuron, suggesting that E2 modifies ionic conductances in Kiss1ARH neurons, enabling the transition from high frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.
RESUMEN
OBJECTIVE: Proopiomelanocortin (POMC) neurons are the key anorexigenic hypothalamic neuron for integrating metabolic cues to generate the appropriate output for maintaining energy homeostasis and express the requisite channels as a perfect synaptic integrator in this role. Similar to the metabolic hormones leptin and insulin, glutamate also excites POMC neurons via group I metabotropic glutamate receptors (mGluR1 and 5, mGluR1/5) that activate Transient Receptor Potential Canonical (TRPC 5) Channels to cause depolarization. A key modulator of TRPC 5 channel activity is stromal interaction molecule 1 (STIM1), which is involved in recruitment of TRPC 5 channels from receptor-operated to store-operated calcium entry following depletion of calcium from the endoplasmic reticulum. METHODS: We used a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas) and a single guide RNA (sgRNA) to mutate Stim1 in POMCCre neurons in male mice, verified by qPCR of Stim1 mRNA expression in single POMC neurons. Whole-cell patch clamp experiments were conducted to validate the effects of Stim1 mutagenesis. Body weight and food intake were measured in male mice to assess disruptions in energy balance. RESULTS: Reduced Stim1 expression augmented the efficacy of the mGluR1/5 agonist 3, 5-Dihydroxyphenylglycine (DHPG) to depolarize POMC neurons via a Gαq-coupled signaling pathway, which is an essential part of excitatory glutamatergic input in regulating energy homeostasis. The TRPC 5 channel blockers HC070 and Pico145 antagonized the excitatory effects of DHPG. As proof of principle, mutagenesis of Stim1 in POMC neurons reduced food intake, attenuated weight gain, reduced body fat and fat pad mass in mice fed a high fat diet. CONCLUSIONS: Using CRISPR technology we have uncovered a critical role of STIM1 in modulating glutamatergic activation of TRPC 5 channels in POMC neurons, which ultimately is important for maintaining energy balance.
Asunto(s)
Neuronas , Obesidad , Molécula de Interacción Estromal 1 , Animales , Masculino , Ratones , Calcio/metabolismo , Dieta Alta en Grasa/efectos adversos , Mutagénesis , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismoRESUMEN
Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. High-frequency firing of hypothalamic arcuate Kiss1 (Kiss1ARH) neurons releases kisspeptin into the median eminence, and neurokinin B (NKB) and dynorphin onto neighboring Kiss1ARH neurons to generate a slow EPSP mediated by TRPC5 channels that entrains intermittent, synchronous firing of Kiss1ARH neurons. High-frequency optogenetic stimulation of Kiss1ARH neurons also releases glutamate to excite the anorexigenic proopiomelanocortin (POMC) neurons and inhibit the orexigenic neuropeptide Y/agouti-related peptide (AgRP) neurons via metabotropic glutamate receptors. At the molecular level, the endoplasmic reticulum (ER) calcium-sensing protein stromal interaction molecule 1 (STIM1) is critically involved in the regulation of neuronal Ca2+ signaling and neuronal excitability through its interaction with plasma membrane (PM) calcium (e.g., TRPC) channels. Therefore, we hypothesized that deletion of Stim1 in Kiss1ARH neurons would increase neuronal excitability and their synchronous firing, which ultimately would affect energy homeostasis. Using optogenetics in combination with whole-cell recording and GCaMP6 imaging in slices, we discovered that deletion of Stim1 in Kiss1 neurons significantly increased the amplitude and duration of the slow EPSP and augmented synchronous [Ca2+]i oscillations in Kiss1ARH neurons. Deletion of Stim1 in Kiss1ARH neurons amplified the actions of NKB and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting (HFD). Therefore, STIM1 appears to play a critical role in regulating synchronous firing of Kiss1ARH neurons, which ultimately affects the coordination between energy homeostasis and reproduction.SIGNIFICANCE STATEMENT Hypothalamic arcuate kisspeptin (Kiss1ARH) neurons are essential for stimulating the pulsatile release of gonadotropin-releasing hormone (GnRH) and maintaining fertility. However, Kiss1ARH neurons appear to be a key player in coordinating energy balance with reproduction. The regulation of calcium channels and hence calcium signaling is critically dependent on the endoplasmic reticulum (ER) calcium-sensing protein stromal interaction molecule 1 (STIM1), which interacts with the plasma membrane (PM) calcium channels. We have conditionally deleted Stim1 in Kiss1ARH neurons and found that it significantly increased the excitability of Kiss1ARH neurons and protected ovariectomized female mice from developing obesity and glucose intolerance with high-fat dieting (HFD).
Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/fisiología , Kisspeptinas/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Señalización del Calcio/fisiología , Dieta Alta en Grasa , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Proteínas Fluorescentes Verdes , RatonesRESUMEN
OBJECTIVE: Arcuate nucleus neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons drive ingestive behavior. The M-current, a subthreshold non-inactivating potassium current, plays a critical role in regulating NPY/AgRP neuronal excitability. Fasting decreases while 17ß-estradiol increases the M-current by regulating the mRNA expression of Kcnq2, 3, and 5 (Kv7.2, 3, and 5) channel subunits. Incorporating KCNQ3 into heteromeric channels has been considered essential to generate a robust M-current. Therefore, we investigated the behavioral and physiological effects of selective Kcnq3 deletion from NPY/AgRP neurons. METHODS: We used a single adeno-associated viral vector containing a recombinase-dependent Staphylococcus aureus Cas9 with a single-guide RNA to selectively delete Kcnq3 in NPY/AgRP neurons. Single-cell quantitative measurements of mRNA expression and whole-cell patch clamp experiments were conducted to validate the selective knockdown. Body weight, food intake, and locomotor activity were measured in male mice to assess disruptions in energy balance. RESULTS: The virus reduced the expression of Kcnq3 mRNA without affecting Kcnq2 or Kcnq5. The M-current was attenuated, causing NPY/AgRP neurons to be more depolarized, exhibit a higher input resistance, and require less depolarizing current to fire action potentials, indicative of increased excitability. Although the resulting decrease in the M-current did not overtly alter ingestive behavior, it significantly reduced the locomotor activity as measured by open-field testing. Control mice on a high-fat diet exhibited an enhanced M-current and increased Kcnq2 and Kcnq3 expression, but the M-current remained significantly attenuated in KCNQ3 knockdown animals. CONCLUSIONS: The M-current plays a critical role in modulating the intrinsic excitability of NPY/AgRP neurons that is essential for maintaining energy homeostasis.
Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/fisiología , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Potenciales de Acción , Animales , Peso Corporal , Sistemas CRISPR-Cas , Dieta Alta en Grasa , Estradiol/metabolismo , Ayuno , Conducta Alimentaria , Femenino , Masculino , Ratones , Neuropéptido Y/genéticaRESUMEN
The identification of loss-of-function mutations in MKRN3 in patients with central precocious puberty in association with the decrease in MKRN3 expression in the medial basal hypothalamus of mice before the initiation of reproductive maturation suggests that MKRN3 is acting as a brake on gonadotropin-releasing hormone (GnRH) secretion during childhood. In the current study, we investigated the mechanism by which MKRN3 prevents premature manifestation of the pubertal process. We showed that, as in mice, MKRN3 expression is high in the hypothalamus of rats and nonhuman primates early in life, decreases as puberty approaches, and is independent of sex steroid hormones. We demonstrated that Mkrn3 is expressed in Kiss1 neurons of the mouse hypothalamic arcuate nucleus and that MKRN3 repressed promoter activity of human KISS1 and TAC3, 2 key stimulators of GnRH secretion. We further showed that MKRN3 has ubiquitinase activity, that this activity is reduced by MKRN3 mutations affecting the RING finger domain, and that these mutations compromised the ability of MKRN3 to repress KISS1 and TAC3 promoter activity. These results indicate that MKRN3 acts to prevent puberty initiation, at least in part, by repressing KISS1 and TAC3 transcription and that this action may involve an MKRN3-directed ubiquitination-mediated mechanism.
Asunto(s)
Kisspeptinas/biosíntesis , Neuronas/metabolismo , Pubertad Precoz/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Femenino , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Células HEK293 , Humanos , Kisspeptinas/genética , Masculino , Ratones , Neuroquinina B/genética , Neuroquinina B/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas , Pubertad Precoz/genética , Pubertad Precoz/patología , Ratas Sprague-Dawley , Transcripción Genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
When it comes to obesity, men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage wanes in postmenopausal women. A key diagnostic of the metabolic syndrome is insulin resistance in both peripheral tissues and brain, especially in the hypothalamus. Since the anorexigenic hormone 17ß-estradiol (E2) regulates food intake in part by inhibiting the excitability of the hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons, we hypothesized that E2 would protect against insulin resistance in NPY/AgRP neurons with diet-induced obesity (DIO). Therefore, we did whole-cell recordings and single cell quantitative polymerase chain reaction in arcuate NPYGFP neurons from both female and male mice to test the efficacy of insulin with DIO. The resting membrane potential and input resistance of NPY/AgRP neurons were significantly increased in DIO versus control-diet fed males. Most notably, the efficacy of insulin to activate KATP channels in NPY/AgRP neurons was significantly attenuated, although the KATP channel opener diazoxide was fully effective in NPY/AgRP neurons from DIO males, indicating that the KATP channels were expressed and functional. In contrast, insulin was fully efficacious to activate KATP channels in DIO females, and the response was reversed by the KATP channel blocker tolbutamide. However, the ability of insulin to activate KATP channels was abrogated with ovariectomy but fully restored with E2 replacement. Insulin resistance in obese males was likely mediated by an increase in suppressor of cytokine signaling-3 (SOCS-3), protein tyrosine phosphatase B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP) activity, since the expression of all 3 mRNAs were upregulated in the obese males but not in females. As proof of principle, pre-incubation of hypothalamic slices from DIO males with the PTP1B/TCPTP inhibitor CX08005 completely rescued the effects of insulin. Therefore, E2 protects NPY/AgRP neurons in females against insulin resistance through, at least in part, attenuating phosphatase activity. The neuroprotective effects of E2 may explain sex differences in the expression of metabolic syndrome that disappears with the loss of E2 in aging.
Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Estradiol/metabolismo , Resistencia a la Insulina/fisiología , Neuronas/fisiología , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Caracteres SexualesRESUMEN
Energy balance is regulated by anorexigenic proopiomelanocortin (POMC) and orexigenic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons of the hypothalamic arcuate nucleus. POMC neurons make extensive projections and are thought to release both amino acid and peptide neurotransmitters. However, whether they communicate directly with NPY/AgRP neurons is debated. Initially, using single-cell RT-PCR, we determined that mouse POMCeGFP neurons express Slc17a6 (Vglut2) and Slc18a2 (Vmat2), but not Slc31a1 (Vgat) mRNA, suggesting glutamate and non-canonical GABA release. Quantitative (q)RT-PCR of POMCeGFP cells revealed that Vglut2 and Vmat2 expression was significantly increased in E2- versus oil-treated, ovariectomized (OVX) female mice. Since 17ß-estradiol (E2) is anorexigenic, we hypothesized that an underlying mechanism is enhancement of POMC signaling. Therefore, we optogenetically stimulated POMC neurons in hypothalamic slices to examine evoked release of neurotransmitters onto NPY/AgRP neurons. Using brief light pulses, we primarily observed glutamatergic currents and, based on the paired pulse ratio (PPR), determined that release probability was higher in E2- versus oil-treated, OVX female, congruent with increased Vlgut2 expression. Moreover, bath perfusion of the Gq-coupled membrane estrogen receptor (ER) agonist STX recapitulated the effects of E2 treatment. In addition, high-frequency (20 Hz) stimulation generated a slow outward current that reversed near Ek+ and was antagonized by naloxone, indicative of ß-endorphin release. Furthermore, individual NPY/AgRP neurons were found to express Oprm1, the transcript for µ-opioid receptor, and DAMGO, a selective agonist, elicited an outward current. Therefore, POMC excitability and neurotransmission are enhanced by E2, which would facilitate decreased food consumption through marked inhibition of NPY/AgRP neurons.
Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Estradiol/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , betaendorfina/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Optogenética , Ovariectomía , Técnicas de Placa-ClampRESUMEN
The neuropeptides tachykinin2 (Tac2) and kisspeptin (Kiss1) in hypothalamic arcuate nucleus Kiss1 (Kiss1ARH) neurons are essential for pulsatile release of GnRH and reproduction. Since 17ß-estradiol (E2) decreases Kiss1 and Tac2 mRNA expression in Kiss1ARH neurons, the role of Kiss1ARH neurons during E2-driven anorexigenic states and their coordination of POMC and NPY/AgRP feeding circuits have been largely ignored. Presently, we show that E2 augmented the excitability of Kiss1ARH neurons by amplifying Cacna1g, Hcn1 and Hcn2 mRNA expression and T-type calcium and h-currents. E2 increased Slc17a6 mRNA expression and glutamatergic synaptic input to arcuate neurons, which excited POMC and inhibited NPY/AgRP neurons via metabotropic receptors. Deleting Slc17a6 in Kiss1 neurons eliminated glutamate release and led to conditioned place preference for sucrose in E2-treated KO female mice. Therefore, the E2-driven increase in Kiss1 neuronal excitability and glutamate neurotransmission may play a key role in governing the motivational drive for palatable food in females.
Asunto(s)
Kisspeptinas/genética , Neuronas/metabolismo , Precursores de Proteínas/genética , Taquicininas/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo T/genética , Estradiol/administración & dosificación , Estradiol/metabolismo , Femenino , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ratones , Neuronas/patología , Canales de Potasio/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genéticaRESUMEN
Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17ß-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation.
Asunto(s)
Estradiol/farmacología , Resistencia a la Insulina , Neuronas/efectos de los fármacos , Obesidad/tratamiento farmacológico , Proopiomelanocortina/metabolismo , Animales , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Femenino , Cobayas , Humanos , Insulina/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismoRESUMEN
Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.
Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Ayuno/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/sangre , Neuronas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Implantes de Medicamentos , Ingestión de Alimentos/fisiología , Estradiol/administración & dosificación , Estrógenos/administración & dosificación , Femenino , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Péptidos Similares al Glucagón/metabolismo , Hormona Luteinizante/antagonistas & inhibidores , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Ovariectomía , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Técnicas de Cultivo de TejidosRESUMEN
Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1(ARC)) and they express androgen receptors, Kiss1(ARC) neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1(ARC) neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1(ARC) neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1(ARC) neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction.
Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Glutamatos/metabolismo , Kisspeptinas/metabolismo , Neuronas/metabolismo , Optogenética , Proopiomelanocortina/metabolismo , Esteroides/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/efectos de la radiación , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/efectos de la radiación , Axones/metabolismo , Axones/ultraestructura , Castración , Channelrhodopsins/metabolismo , Luz , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
In vitro slice studies have revealed that there are significant differences in the spontaneous firing activity between anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) and arcuate nucleus (ARC) kisspeptin (Kiss1) neurons in females. Although both populations express similar endogenous conductances, we have discovered that AVPV/PeN Kiss1 neurons express a subthreshold, persistent sodium current (INaP) that dramatically alters their firing activity. Based on whole-cell recording of Kiss1-Cre-green fluorescent protein (GFP) neurons, INaP was 4-fold greater in AVPV/PeN vs ARC Kiss1 neurons. An LH surge-producing dose of 17ß-estradiol (E2) that increased Kiss1 mRNA expression in the AVPV/PeN, also augmented INaP in AVPV/PeN neurons by 2-fold. Because the activation threshold for INaP was close to the resting membrane potential (RMP) of AVPV/PeN Kiss1 neurons (-54 mV), it rendered them much more excitable and spontaneously active vs ARC Kiss1 neurons (RMP = -66 mV). Single-cell RT-PCR revealed that AVPV/PeN Kiss1 neurons expressed the requisite sodium channel α-subunit transcripts, NaV1.1, NaV1.2, and NaV1.6 and ß subunits, ß2 and ß4. Importantly, NaV1.1α and -ß2 transcripts in AVPV/PeN, but not ARC, were up-regulated 2- to 3-fold by a surge-producing dose of E2, similar to the transient calcium current channel subunit Cav3.1. The transient calcium current collaborates with INaP to generate burst firing, and selective blockade of INaP by riluzole significantly attenuated rebound burst firing and spontaneous activity. Therefore, INaP appears to play a prominent role in AVPV/PeN Kiss1 neurons to generate spontaneous, repetitive burst firing, which is required for the high-frequency-stimulated release of kisspeptin for exciting GnRH neurons and potentially generating the GnRH surge.
Asunto(s)
Potenciales de Acción/efectos de los fármacos , Estradiol/farmacología , Hipotálamo Anterior/efectos de los fármacos , Kisspeptinas/metabolismo , Neuronas/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/fisiología , Femenino , Hipotálamo Anterior/fisiología , Kisspeptinas/genética , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Neuronas/fisiología , Canales de Sodio/genética , Canales de Sodio/metabolismoRESUMEN
Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels and the inhibition of K+ channels. The gonadal steroid 17ß-estradiol (E2) upregulates not only kisspeptin (Kiss1) mRNA but also increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic action of E2 on GnRH neurons is to upregulate the expression of channel transcripts that orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only TRPC4 channels but also low-voltage-activated T-type calcium channels and high-voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive potassium channel activity, which is critical for maintaining GnRH neurons in a hyperpolarized state for the recruitment of T-type calcium channels that are important for burst firing. Therefore, E2 modulates the excitability of GnRH neurons as well as of Kiss1 neurons by altering the expression and/or function of ion channels; moreover, kisspeptin provides critical excitatory input to GnRH neurons to facilitate burst firing activity and peptide release.
Asunto(s)
Encéfalo/metabolismo , Estradiol/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuronas/metabolismo , Potenciales de Acción , Animales , HumanosRESUMEN
Tachykinins are comprised of the family of related peptides, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). NKB has emerged as regulator of kisspeptin release in the arcuate nucleus (ARC), whereas the roles of SP and NKA in reproduction remain unknown. This work explores the roles of SP and NKA in the central regulation of GnRH release. First, central infusion of specific agonists for the receptors of SP (neurokinin receptor 1, NK1R), NKA (NK2R) and NKB (NK3R) each induced gonadotropin release in adult male and ovariectomized, estradiol-replaced female mice, which was absent in Kiss1r(-/-) mice, indicating a kisspeptin-dependent action. The NK2R agonist, however, decreased LH release in ovariectomized-sham replaced females, as documented for NK3R agonists but in contrast to the NK1R agonist, which further increased LH release. Second, Tac1 (encoding SP and NKA) expression in the ARC and ventromedial nucleus was inhibited by circulating estradiol but did not colocalize with Kiss1 mRNA. Third, about half of isolated ARC Kiss1 neurons expressed Tacr1 (NK1R) and 100% Tacr3 (NK3R); for anteroventral-periventricular Kiss1 neurons and GnRH neurons, approximately one-fourth expressed Tacr1 and one-tenth Tacr3; Tacr2 (NK2R) expression was absent in all cases. Overall, these results identify a potent regulation of gonadotropin release by the SP/NK1R and NKA/NK2R systems in the presence of kisspeptin-Kiss1r signaling, indicating that they may, along with NKB/NK3R, control GnRH release, at least in part through actions on Kiss1 neurons.
Asunto(s)
Hipotálamo/metabolismo , Neuroquinina A/metabolismo , Reproducción , Sustancia P/metabolismo , Animales , Estradiol/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Receptores de Taquicininas/agonistasRESUMEN
Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin and insulin receptors are coupled to the activation of phosphatidylinositide 3 kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that, similar to leptin, purified insulin depolarized POMC and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn(2+), which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally, as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis.
Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Insulina/farmacología , Kisspeptinas/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Cobayas , Canales KATP/efectos de los fármacos , Ratones , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zinc/farmacologíaRESUMEN
Kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3V) provide excitatory drive to gonadotropin-releasing hormone (GnRH) neurons to control fertility. Using whole cell patch clamp recording and single-cell (sc)RT-PCR techniques targeting Kiss1-CreGFP or tyrosine hydroxylase (TH)-EGFP neurons, we characterized the biophysical properties of these neurons and identified the critical intrinsic properties required for burst firing in 17ß-estradiol (E2)-treated, ovariectomized female mice. One-fourth of the RP3V Kiss1 neurons exhibited spontaneous burst firing. RP3V Kiss1 neurons expressed a hyperpolarization-activated h-current (Ih) and a T-type calcium current (IT), which supported hyperpolarization-induced rebound burst firing. Under voltage clamp conditions, all Kiss1 neurons expressed a kinetically fast Ih that was augmented 3.4-fold by high (LH surge-producing)-E2 treatment. scPCR analysis of Kiss1 neurons revealed abundant expression of the HCN1 channel transcripts. Kiss1 neurons also expressed a Ni(2+)- and TTA-P2-sensitive IT that was augmented sixfold with high-E2 treatment. CaV3.1 mRNA was also highly expressed in these cells. Current clamp analysis revealed that rebound burst firing was induced in RP3V Kiss1 neurons in high-E2-treated animals, and the majority of Kiss1 neurons had a hyperpolarization threshold of -84.7 mV, which corresponded to the V½ for IT de-inactivation. Finally, Kiss1 neurons in the RP3V were hyperpolarized by µ- and κ-opioid and GABAB receptor agonists, suggesting that these pathways also contribute to rebound burst firing. Therefore, Kiss1 neurons in the RP3V express the critical channels and receptors that permit E2-dependent rebound burst firing and provide the biophysical substrate that drives the preovulatory surge of GnRH.
Asunto(s)
Estradiol/farmacología , Kisspeptinas/metabolismo , Neuronas/fisiología , Área Preóptica/metabolismo , Animales , Femenino , Fase Folicular/efectos de los fármacos , Fase Folicular/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kisspeptinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Ovariectomía , Área Preóptica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Tercer Ventrículo/efectos de los fármacos , Tercer Ventrículo/metabolismoRESUMEN
Kisspeptin signaling via its Gαq-coupled receptor GPR54 plays a crucial role in modulating GnRH neuronal excitability, which controls pituitary gonadotropins secretion and ultimately reproduction. Kisspeptin potently depolarizes GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels, but the intracellular signaling cascade has not been elucidated. Presently, we have established that kisspeptin activation of TRPC channels requires multiple membrane and intracellular signaling molecules. First, phosphatidylinositol-4,5-bisphosphate (PIP(2)) hydrolysis by phospholipase Cß is required because whole-cell dialysis of Dioctanoylglycerol-PIP(2) (DiC8-PIP(2)) inhibited the kisspeptin activation of TRPC channels, and the phosphatidylinositol 4-kinase inhibitor wortmannin, which attenuates PIP(2) synthesis, prolonged TRPC channel activation. Using single cell RT-PCR, we identified that the mRNA for the PIP(2)-interacting TRPC channel subunit, TRPC4α, is expressed in GnRH neurons. Depletion of intracellular Ca(2+) stores by thapsigargin and inositol 1,4,5-trisphosphate had no effect, indicating that the TRPC channels are not store-operated. Neither removing extracellular Ca(2+) nor buffering intracellular Ca(2+) with EGTA or BAPTA had any effect on the kisspeptin activation of the TRPC channels. However, the Ca(2+) channel blocker Ni(2+) inhibited the kisspeptin-induced inward current. Moreover, inhibition of protein kinase C by bisindolylmaleimide-I or calphostin C had no effect, but activation of protein kinase C by phorbol 12,13-dibutyrate occluded the kisspeptin-activated current. Finally, inhibition of the cytoplasmic tyrosine kinase cSrc by genistein or the pyrazolo-pyrimidine PP2 blocked the activation of TRPC channels by kisspeptin. Therefore, TRPC channels in GnRH neurons are receptor-operated, and kisspeptin activates TRPC channels through PIP(2) depletion and cSrc tyrosine kinase activation, which is a novel signaling pathway for peptidergic excitation of GnRH neurons.
Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/farmacología , Neuronas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPC/metabolismo , Familia-src Quinasas/metabolismo , Androstadienos/farmacología , Animales , Proteína Tirosina Quinasa CSK , Calcio/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Genisteína/farmacología , Hormona Liberadora de Gonadotropina/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/fisiología , Ovariectomía , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Canales Catiónicos TRPC/genética , Wortmanina , Familia-src Quinasas/antagonistas & inhibidoresRESUMEN
Burst firing of neurons optimizes neurotransmitter release. GnRH neurons exhibit burst firing activity and T-type calcium channels, which are vital for burst firing activity, are regulated by 17ß-estradiol (E2) in GnRH neurons. To further elucidate ion channel expression and E2 regulation during positive and negative feedback on GnRH neurosecretion, we used single cell RT-PCR and real-time qPCR to quantify channel mRNA expression in GnRH neurons. GFP-GnRH neurons expressed numerous ion channels important for burst firing activity. E2-treatment sufficient to induce an LH surge increased mRNA expression of HCN1 channels, which underlie the pacemaker current, the calcium-permeable Ca(V)1.3, Ca(V)2.2, Ca(V)2.3 channels, and TRPC4 channels, which mediate the kisspeptin excitatory response. E2 also decreased mRNA expression of SK3 channels underlying the medium AHP current. Therefore, E2 exerts fundamental changes in ion channel expression in GnRH neurons, to prime them to respond to incoming stimuli with increased excitability at the time of the surge.
Asunto(s)
Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Canales Iónicos/genética , Neuronas/metabolismo , Animales , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Canales Iónicos/metabolismo , Hormona Luteinizante/sangre , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Ovariectomía , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Análisis de RegresiónRESUMEN
Kisspeptin is essential for reproductive functions in humans. As a model for the human we have used the female guinea pig, which has a long ovulatory cycle similar to that of primates. Initially, we cloned a guinea pig kisspeptin cDNA sequence and subsequently explored the distribution and 17ß-estradiol (E2) regulation of kisspeptin mRNA (Kiss1) and protein (kisspeptin) by using in situ hybridization, real-time PCR and immunocytochemistry. In ovariectomized females, Kiss1 neurons were scattered throughout the preoptic periventricular areas (PV), but the vast majority of Kiss1 neurons were localized in the arcuate nucleus (Arc). An E2 treatment that first inhibits (negative feedback) and then augments (positive feedback) serum luteinizing hormone (LH) increased Kiss1 mRNA density and number of cells expressing Kiss1 in the PV at both time points. Within the Arc, Kiss1 mRNA density was reduced at both time points. Quantitative real-time PCR confirmed the in situ hybridization results during positive feedback. E2 reduced the number of immunoreactive kisspeptin cells in the PV at both time points, perhaps an indication of increased release. Within the Arc, the kisspeptin immunoreactivity was decreased during negative feedback but increased during positive feedback. Therefore, it appears that in guinea pig both the PV and the Arc kisspeptin neurons act cooperatively to excite gonadotropin-releasing hormone (GnRH) neurons during positive feedback. We conclude that E2 regulation of negative and positive feedback may reflect a complex interaction of the kisspeptin circuitry, and both the PV and the Arc respond to hormone signals to encode excitation of GnRH neurons during the ovulatory cycle.
Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Kisspeptinas/metabolismo , Análisis de Varianza , Animales , Clonación Molecular , Diencéfalo/efectos de los fármacos , Diencéfalo/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Cobayas , Hipotálamo/anatomía & histología , Hipotálamo/metabolismo , Kisspeptinas/genética , Ovariectomía , ARN Mensajero/metabolismoRESUMEN
Neurons that produce kisspeptin play a critical role in reproduction. However, understanding the molecular physiology of kisspeptin neurons has been limited by the lack of an in vivo marker for those cells. Here, we report the development of a Kiss1-CreGFP knockin mouse, wherein the endogenous Kiss1 promoter directs the expression of a Cre recombinase-enhanced green fluorescent protein (GFP) fusion protein. The pattern of GFP expression in the brain of the knockin recapitulates what has been described earlier for Kiss1 in the male and female mouse, with prominent expression in the arcuate nucleus (ARC) (in both sexes) and the anteroventral periventricular nucleus (in females). Single-cell RT-PCR showed that the Kiss1 transcript is expressed in 100% of GFP-labeled cells, and the CreGFP transcript was regulated by estradiol in the same manner as the Kiss1 gene (i.e. inhibited in the ARC and induced in the anteroventral periventricular nucleus). We used this mouse to evaluate the biophysical properties of kisspeptin (Kiss1) neurons in the ARC of the female mouse. GFP-expressing Kiss1 neurons were identified in hypothalamic slice preparations of the ARC and patch clamped. Whole-cell (and loose attached) recordings revealed that Kiss1 neurons exhibit spontaneous activity and expressed both h- (pacemaker) and T-type calcium currents, and hyperpolarization-activated cyclic nucleotide-regulated 1-4 and CaV3.1 channel subtypes (measured by single cell RT-PCR), respectively. N-methyl-D-aspartate induced bursting activity, characterized by depolarizing/hyperpolarizing oscillations. Therefore, Kiss1 neurons in the ARC share molecular and electrophysiological properties of other CNS pacemaker neurons.