Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 892: 164818, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37315600

RESUMEN

Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts. We argue that the lack of information about these habitats, and the significant ecosystem services they provide, is hindering the development of effective conservation measures and limiting wider marine conservation success. This is becoming a pressing issue, considering the multiple severe pressures and threats these habitats are exposed to (e.g., pollution, fishing activities, climate change), which may lead to an erosion of their ecological function and ecosystem services. By synthesizing the current knowledge, we provide arguments to highlight the importance and urgency of levelling-up research efforts focused on rhodolith beds, combating rhodolith bed degradation and avoiding the loss of associated biodiversity, thus ensuring the sustainability of future conservation programs.


Asunto(s)
Biodiversidad , Ecosistema , Arrecifes de Coral , Contaminación Ambiental , Bosques , Conservación de los Recursos Naturales
2.
Sci Rep ; 13(1): 4963, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973395

RESUMEN

The degradation of shallow ecosystems has called for efforts to understand the biodiversity and functioning of Mesophotic Ecosystems. However, most empirical studies have been restricted to tropical regions and have majorly focused on taxonomic entities (i.e., species), neglecting important dimensions of biodiversity that influence community assembly and ecosystem functioning. Here, using a subtropical oceanic island in the eastern Atlantic Ocean (Lanzarote, Canary Islands), we investigated variation in (a) alpha and (b) beta functional (i.e., trait) diversity across a depth gradient (0-70 m), as a function of the presence of black coral forests (BCFs, order Antipatharian) in the mesophotic strata, a vulnerable but often overlooked 'ecosystem engineer' in regional biodiversity. Despite occupying a similar volume of the functional space (i.e., functional richness) than shallow (< 30 m) reefs, mesophotic fish assemblages inhabiting BCFs differed in their functional structure when accounting for species abundances, with lower evenness and divergence. Similarly, although mesophotic BCFs shared, on average, 90% of the functional entities with shallow reefs, the identity of common and dominant taxonomic and functional entities shifted. Our results suggest BCFs promoted the specialization of reef fishes, likely linked to convergence towards optimal traits to maximize the use of resources and space. Regional biodiversity planning should thus focus on developing specific management and conservation strategies for preserving the unique biodiversity and functionality of mesophotic BCFs.


Asunto(s)
Antozoos , Ecosistema , Animales , Arrecifes de Coral , Biodiversidad , Bosques , Peces
3.
Oecologia ; 200(3-4): 455-470, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36344837

RESUMEN

Understanding the extent to which species' traits mediate patterns of community assembly is key to predict the effect of natural and anthropogenic disturbances on ecosystem functioning. Here, we apply a trait-based community assembly framework to understand how four different habitat configurations (kelp forests, Sargassum spp. beds, hard corals, and turfs) shape the trophic and energetic dynamics of reef fish assemblages in a tropical-temperate transition zone. Specifically, we tested (i) the degree of trait divergence and convergence in each habitat, (ii) which traits explained variation in species' abundances, and (iii) differences in standing biomass (kg ha-1), secondary productivity (kg ha-1 day-1) and turnover (% day-1). Fish assemblages in coral and kelp habitats displayed greater evidence of trait convergence, while turf and Sargassum spp. habitats displayed a higher degree of trait divergence, a pattern that was mostly driven by traits related to resource use and thermal affinity. This filtering effect had an imprint on the trophic and energetic dynamics of reef fishes, with turf habitats supporting higher fish biomass and productivity. However, these gains were strongly dependent on trophic guild, with herbivores/detritivores disproportionately contributing to among-habitat differences. Despite these perceived overall gains, turnover was decoupled for fishes that act as conduit of energy to higher trophic levels (i.e. microinvertivores), with coral habitats displaying higher rates of fish biomass replenishment than turf despite their lower productivity. This has important implications for biodiversity conservation and fisheries management, questioning the long-term sustainability of ecological processes and fisheries yields in increasingly altered marine habitats.


Asunto(s)
Antozoos , Kelp , Animales , Ecosistema , Peces , Estado Nutricional
4.
Ecol Evol ; 12(7): e9098, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35845375

RESUMEN

Sharks play a key role in the structure and functioning of marine ecosystems. More ecological information is essential to implement responsible management and conservation actions on this fauna, particularly at a regional level for threatened species. Mustelus mustelus is widely found in the eastern Atlantic Ocean and catalogued as "Vulnerable" by the IUCN European assessment. In this study, data on the distribution and population structure of this species across the islands of the Canarian archipelago, located along an east to west gradient in the north-eastern Atlantic, were collected by taking advantage of "Local Ecological Knowledge," in terms of sightings in coastal waters and long-term imprints on the local gastronomic heritage, and decadal fisheries landings. Both sources of quantitative data (sightings and fisheries landings) demonstrated that adults of M. mustelus has a significantly larger presence in the eastern and central, than in the western islands of the archipelago. This is also reflected on local gastronomic legacies, with a larger number of recipes in the eastern and central islands. Adult smooth-hound sharks were significantly more observed in sandy and sandy-rocky bottoms, with individuals seen throughout the entire year, whereas juveniles aggregate on very shallow waters in spring and summer. Such aggregations require a special management strategy, as they play a key role in critical life stages; these sites should be protected from human perturbations. We also suggest a temporal fishing ban between April and October, when individuals tend to concentrate on nearshore waters. Because of the large differences in presence of this shark among the Canary Islands, management of the species should be adapted to the specific peculiarities of each island, rather than adopting a management policy at the entire archipelago-scale. Overall, this study sets the basis for further investigation to promote conservation of this vulnerable shark in the study region.

5.
Ecol Evol ; 12(1): e8538, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127041

RESUMEN

Temperate reefs are increasingly affected by the direct and indirect effects of climate change. At many of their warm range edges, cool-water kelps are decreasing, while seaweeds with warm-water affinities are increasing. These habitat-forming species provide different ecological functions, and shifts to warm-affinity seaweeds are expected to modify the structure of associated communities. Predicting the nature of such shifts at the ecosystem level is, however, challenging, as they often occur gradually over large geographical areas. Here, we take advantage of a climatic transition zone, where cool-affinity (kelp) and warm-affinity (Sargassum) seaweed forests occur adjacently under similar environmental conditions, to test whether these seaweed habitats support different associated seaweed, invertebrate, coral, and fish assemblages. We found clear differences in associated seaweed assemblages between habitats characterized by kelp and Sargassum abundance, with kelp having higher biomass and seaweed diversity and more cool-affinity species than Sargassum habitats. The multivariate invertebrate and fish assemblages were not different between habitats, despite a higher diversity of fish species in the Sargassum habitat. No pattern in temperature affinity of the invertebrate or fish assemblages in each habitat was found, and few fish species were exclusive to one habitat or the other. These findings suggest that, as ocean warming continues to replace kelps with Sargassum, the abundance and diversity of associated seaweeds could decrease, whereas fish could increase. Nevertheless, the more tropicalized seaweed habitats may provide a degree of functional redundancy to associated fauna in temperate seaweed habitats.

6.
Glob Chang Biol ; 28(7): 2296-2311, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34981602

RESUMEN

Extreme climatic events can reshape the functional structure of ecological communities, potentially altering ecological interactions and ecosystem functioning. While these shifts have been widely documented, evidence of their persistence and potential flow-on effects on ecosystem structure following relaxation of extreme events remains limited. Here, we investigate changes in the functional trait structure - encompassing dimensions of resource use, thermal affinity, and body size - of herbivorous fishes in a temperate reef system that experienced an extreme marine heatwave (MHW) and subsequent return to cool conditions. We quantify how changes in the trait structure modified the nature and intensity of herbivory-related functions (macroalgae, turf, and sediment removal), and explored the potential flow-on effects on the recovery dynamics of macroalgal foundation species. The trait structure of the herbivorous fish assemblage shifted as a result of the MHW, from dominance of cool-water browsing species to increased evenness in the distribution of abundance among temperate and tropical guilds supporting novel herbivory roles (i.e. scraping, cropping, and sediment sucking). Despite the abundance of tropical herbivorous fishes and intensity of herbivory-related functions declined following a period of cooling after the MHW, the underlying trait structure displayed limited recovery. Concomitantly, algal assemblages displayed a lack of recovery of the formerly dominant foundational species, the kelp Ecklonia radiata, transitioning to an alternative state dominated by turf and Sargassum spp. Our study demonstrates a legacy effect of an extreme MHW and exemplified the value of monitoring phenotypic (trait mediated) changes in the nature of core ecosystem processes to predict and adapt to the future configurations of changing reef ecosystems.


Asunto(s)
Herbivoria , Algas Marinas , Animales , Arrecifes de Coral , Ecosistema , Peces , Bosques
7.
Conserv Biol ; 36(2): e13807, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34312893

RESUMEN

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Tamaño Corporal , Explotaciones Pesqueras , Peces , Humanos
8.
Ecol Evol ; 11(23): 16704-16715, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938467

RESUMEN

Batoids, distributed from shallow to abyssal depths, are considerably vulnerable to anthropogenic threats. Data deficiencies on the distribution patterns of batoids, however, challenge their effective management and conservation. In this study, we took advantage of the particular geological and geomorphological configuration of the Canary Islands, across an east-to-west gradient in the eastern Atlantic Ocean, to assess whether patterns in the occurrence and abundance of batoids varied between groups of islands (western, central, and eastern). Data were collected from shallow (<40 m, via underwater visual counts and by a local community science program) and deep waters (60-700 m, via ROV deployments). Eleven species of batoids, assessed by the IUCN Red List of Threatened Species, were registered, including three "Critically Endangered" (Aetomylaeus bovinus, Dipturus batis, and Myliobatis aquila), three "Endangered" (Gymnura altavela, Mobula mobular, and Rostroraja alba), two "Vulnerable" (Dasyatis pastinaca and Raja maderenseis), and two "Data Deficient" (Taeniurops grabata and Torpedo marmorata). Also, a "Least Concern" species (Bathytoshia lata) was observed. Overall, batoids were ~1 to 2 orders of magnitude more abundant in the central and eastern islands, relative to the western islands. This pattern was consistent among the three sources of data and for both shallow and deep waters. This study, therefore, shows differences in the abundance of batoids across an oceanic archipelago, likely related to varying insular shelf area, availability of habitats, and proximity to the nearby continental (African) mass. Large variation in population abundances among islands suggests that "whole" archipelago management strategies are unlikely to provide adequate conservation. Instead, management plans should be adjusted individually per island and complemented with focused research to fill data gaps on the spatial use and movements of these iconic species.

9.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34015863

RESUMEN

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Australia , Ecosistema , Explotaciones Pesqueras , Peces , Océanos y Mares
10.
Ecol Evol ; 7(13): 4891-4906, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28690817

RESUMEN

Understanding changes in biodiversity requires the implementation of monitoring programs encompassing different dimensions of biodiversity through varying sampling techniques. In this work, fish assemblages associated with the "outer" and "inner" sides of four marinas, two at the Canary Islands and two at southern Portugal, were investigated using three complementary sampling techniques: underwater visual censuses (UVCs), baited cameras (BCs), and fish traps (FTs). We firstly investigated the complementarity of these sampling methods to describe species composition. Then, we investigated differences in taxonomic (TD), phylogenetic (PD) and functional diversity (FD) between sides of the marinas according to each sampling method. Finally, we explored the applicability/reproducibility of each sampling technique to characterize fish assemblages according to these metrics of diversity. UVCs and BCs provided complementary information, in terms of the number and abundances of species, while FTs sampled a particular assemblage. Patterns of TD, PD, and FD between sides of the marinas varied depending on the sampling method. UVC was the most cost-efficient technique, in terms of personnel hours, and it is recommended for local studies. However, for large-scale studies, BCs are recommended, as it covers greater spatio-temporal scales by a lower cost. Our study highlights the need to implement complementary sampling techniques to monitor ecological change, at various dimensions of biodiversity. The results presented here will be useful for optimizing future monitoring programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...