Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 3): 464-468, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619290

RESUMEN

High energy resolution fluorescence detected X-ray absorption spectroscopy is a powerful method for probing the electronic structure of functional materials. The X-ray penetration depth and photon-in/photon-out nature of the method allow operando experiments to be performed, in particular in electrochemical cells. Here, operando high-resolution X-ray absorption measurements of a BiVO4 photoanode are reported, simultaneously probing the local electronic states of both cations. Small but significant variations of the spectral lineshapes induced by the applied potential were observed and an explanation in terms of the occupation of electronic states at or near the band edges is proposed.

2.
Adv Mater ; 36(7): e2308392, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814460

RESUMEN

A multistep synthesis of a new tetra-amidate macrocyclic ligand functionalized with alkyl-thiophene moieties, 15,15-bis(6-(thiophen-3-yl)hexyl)-8,13-dihydro-5H-dibenzo[b,h][1,4,7,10]tetraazacyclotridecine-6,7,14,16(15H,17H)-tetraone, H4 L, is reported. The reaction of the deprotonated ligand, L4- , and Cu(II) generates the complex [LCu]2- , that can be further oxidized to Cu(III) with iodine to generate [LCu]- . The H4 L ligand and their Cu complexes have been thoroughly characterized by analytic and spectroscopic techniques (including X-ray Absorption Spectroscopy, XAS). Under oxidative conditions, the thiophene group of [LCu]2- complex polymerizes on the surface of graphitic electrodes (glassy carbon disks (GC), glassy carbon plates (GCp ), carbon nanotubes (CNT), or graphite felts (GF)) generating highly stable thin films. With CNTs deposited on a GC by drop casting, hybrid molecular materials labeled as GC/CNT@p-[LCu]2- are obtained. The latter are characterized by electrochemical techniques that show their capacity to electrocatalytically oxidize water to dioxygen at neutral pH. These new molecular anodes achieve current densities in the range of 0.4 mA cm-2 at 1.30 V versus NHE with an onset overpotential at ≈250 mV. Bulk electrolysis experiments show an excellent stability achieving TONs in the range of 7600 during 24 h with no apparent loss of catalytic activity and maintaining the molecular catalyst integrity, as evidenced by electrochemical techniques and XAS spectroscopy.

3.
Nano Lett ; 21(4): 1729-1734, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33570965

RESUMEN

Expanding the activity of wide bandgap semiconductors from the UV into the visible range has become a central goal for their application in green solar photocatalysis. The hybrid plasmonic/semiconductor system, based on silver nanoparticles (Ag NPs) embedded in a film of CeO2, is an example of a functional material developed with this aim. In this work, we take advantage of the chemical sensitivity of free electron laser (FEL) time-resolved soft X-ray absorption spectroscopy (TRXAS) to investigate the electron transfer process from the Ag NPs to the CeO2 film generated by the NPs plasmonic resonance photoexcitation. Ultrafast changes (<200 fs) of the Ce N4,5 absorption edge allowed us to conclude that the excited Ag NPs transfer electrons to the Ce atoms of the CeO2 film through a highly efficient electron-based mechanism. These results demonstrate the potential of FEL-based TRXAS measurements for the characterization of energy transfer in novel hybrid plasmonic/semiconductor materials.

4.
ACS Appl Mater Interfaces ; 12(42): 47435-47446, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32986954

RESUMEN

Hematite (α-Fe2O3) is an earth-abundant indirect n-type semiconductor displaying a band gap of about 2.2 eV, useful for collecting a large fraction of visible photons, with frontier energy levels suitably aligned for carrying out the photoelectrochemical water oxidation reaction under basic conditions. The modification of hematite mesoporous thin-film photoanodes with Ti(IV), as well as their functionalization with an oxygen-evolving catalyst, leads to a 6-fold increase in photocurrent density with respect to the unmodified electrode. In order to provide a detailed understanding of this behavior, we report a study of Ti-containing phases within the mesoporous film structure. Using X-ray absorption fine structure and high-resolution transmission electron microscopy coupled with electron energy loss spectroscopy, we find that Ti(IV) ions are incorporated within ilmenite (FeTiO3) near-surface layers, thus modifying the semiconductor-electrolyte interface. To the best of our knowledge, this is the first time that an FeTiO3/α-Fe2O3 composite is used in a photoelectrochemical setup for water oxidation. In fact, previous studies of Ti(IV)-modified hematite photoanodes reported the formation of pseudobrookite (Fe2TiO5) at the surface. By means of transient absorption spectroscopy, transient photocurrent experiments, and electrochemical impedance spectroscopy, we show that the formation of the Fe2O3/FeTiO3 interface passivates deep traps at the surface and induces a large density of donor levels, resulting in a strong depletion field that separates electron and holes, favoring hole injection in the electrolyte. Our results provide the identification of a phase coexistence with enhanced photoelectrochemical performance, allowing for the rational design of new photoanodes with improved kinetics.

5.
Nanomaterials (Basel) ; 10(2)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059432

RESUMEN

By combining X-ray absorption fine structure and X-ray diffraction measurements with density functional and molecular dynamics simulations, we study the structure of a set of AgxBi1-xS2 nanoparticles, a materials system of considerable current interest for photovoltaics. An apparent contradiction between the evidence provided by X-ray absorption and diffraction measurements is solved by means of the simulations. We find that disorder in the cation sublattice induces strong local distortions, leading to the appearance of short Ag-S bonds, the overall lattice symmetry remaining close to hexagonal.

6.
J Phys Chem C Nanomater Interfaces ; 124(30): 16577-16585, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-33643515

RESUMEN

We present a combined experimental and computational study of the effect of charge doping in the osmium based double perovskite Ba2Na1-x Ca x OsO6 for 0 ≤ x ≤ 1 in order to provide a structural and electronic basis for understanding this complex Dirac-Mott insulator material. Specifically, we investigate the effects of the substitution of monovalent Na with divalent Ca, a form of charge doping or alloying that nominally tunes the system from Os7+ with a 5d1 configuration to Os6+ with 5d2 configuration. After an X-ray diffraction characterization, the local atomic and electronic structure has been experimentally probed by X-ray absorption fine structure at all the cation absorption edges at room temperature; the simulations have been performed using ab initio density functional methods. We find that the substitution of Na by Ca induces a linear volume expansion of the crystal structure which indicates an effective alloying due to the substitution process in the whole doping range. The local structure corresponds to the expected double perovskite one with rock-salt arrangement of Na/Ca in the B site and Os in the B' one for all the compositions. X-ray absorption near edge structure measurements show a smooth decrease of the oxidation state of Os from 7+ (5d1) to 6+ (5d2) with increasing Ca concentration, while the oxidation states of Ba, Na, and Ca are constant. This indicates that the substitution of Na by Ca gives rise to an effective electron transfer from the B to the B' site. The comparison between X-ray absorption measurements and ab initio simulations reveals that the expansion of the Os-O bond length induces a reduction of the crystal field splitting of unoccupied Os derived d states.

7.
Photochem Photobiol Sci ; 18(9): 2150-2163, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931455

RESUMEN

WO3/BiVO4 films obtained by electrochemical deposition of BiVO4 over mesoporous WO3 were applied to the photoelectrochemical degradation of selected emerging contaminants (ketoprofen and levofloxacine) in aqueous solutions. The WO3/BiVO4 films in this work are characterized by a mesoporous morphology with a maximum photoconversion efficiency >40% extending beyond 500 nm in Na2SO4 electrolytes. Oxygen was found to be the dominant water oxidation product (ca. 90% faradaic yield) and no evidence for the photogeneration of OH radicals was obtained. Nevertheless, both 10 ppm levofloxacine and ketoprofen could be degraded at WO3/BiVO4 junctions upon a few hours of illumination under visible light. However, while levofloxacine degradation intermediates were progressively consumed by further oxidation at the WO3/BiVO4 interface, ketoprofen oxidation byproducts, being stable aromatic species, were found to be persistent in aqueous solution even after 15 hours of solar simulated illumination. This indicates that, due to the lower oxidizing power of photogenerated holes in BiVO4 and a different water oxidation mechanism, the employment of WO3/BiVO4 in photoelectrochemical environmental remediation processes is much less universal than that possible with wider band gap semiconductors such as TiO2 and WO3.

8.
Phys Chem Chem Phys ; 20(36): 23507-23514, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30183019

RESUMEN

The addition of cerium oxide to bioactive glasses, important materials for bone tissue regeneration, has been shown to induce multifunctionality, combining a significant bioactivity with antioxidant properties. We provide a real time investigation of the evolution of the electronic properties of highly diluted cerium ions in a liquid environment containing hydrogen peroxide - the most abundant reactive oxygen species in living cells. This challenging task is undertaken by means of high-energy resolution fluorescence detected by X-ray absorption near-edge spectroscopy at the Ce L3 edge. We investigate samples with variable compositions and different morphologies. We relate the observed spectroscopic changes not only to variations in the concentration of the two Ce oxidation states in the samples, but also to changes in the local atomic environment of Ce ions, providing a clear picture of the role of cerium ions in the dissociation of hydrogen peroxide. The obtained results contribute to the understanding of the mechanisms that come into play in the process and provide a basis for the optimization of the functionalities of this class of materials.


Asunto(s)
Cerio/química , Peróxido de Hidrógeno/química , Catálisis , Vidrio/química , Espectrometría de Fluorescencia
9.
Phys Chem Chem Phys ; 20(1): 221-231, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29199759

RESUMEN

We report an X-ray absorption near edge structure (XANES) study of vanadium (V) and nitrogen (N) dopants in anatase TiO2 thin films deposited by radio-frequency magnetron sputtering. Measurements at the Ti K and V K edges were combined with soft X-ray experiments at the Ti L2,3, O K and N K edges. Full potential ab initio spectral simulations of the V, O and N K-edges were carried out for different possible configurations of substitutional and interstitial dopant-related point defects in the anatase structure. The comparison between experiments and simulations demonstrates that V occupies substitutional cationic sites (replacing Ti) irrespective of the film structure and dopant concentration (up to 4.5 at%). On the other hand, N is found both in substitutional anionic sites (replacing O) and as N2 dimers within TiO2 interstices. The dopants' local structures are discussed with reference to the enhanced optical absorption and photocatalytic activity achieved by (co)doping.

10.
Nanotechnology ; 28(49): 495702, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29016361

RESUMEN

An accurate description of the structural and chemical modifications of cerium oxide nanoparticles (NPs) is mandatory for understanding their functionality in applications. In this work we investigate the relation between local atomic structure, oxidation state, defectivity and size in cerium oxide NPs with variable diameter below 10 nm, using x-ray absorption fine structure analysis in the near and extended energy range. The NPs are prepared by physical methods under controlled conditions and analyzed in morphology and crystalline quality by high resolution transmission electron microscopy. We resolve here an important question on the local structure of cerium oxide NPs: we demonstrate a progressive contraction in the Ce-O interatomic distance with decreasing NP diameter and we relate the observed effect to the reduced dimensionality. The contraction is not significantly modified by inducing a 4%-6% higher Ce3+ concentration through thermal annealing in high vacuum. The consequences of the observed average cation-anion distance contraction on the properties of the NPs are discussed.

11.
Phys Chem Chem Phys ; 18(30): 20511-7, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27405957

RESUMEN

We investigated the evolution of the electronic structure of cerium oxide ultrathin epitaxial films during reduction and oxidation processes using resonant inelastic X-ray scattering at the Ce L3 absorption edge, a technique sensitive to the electronic configurations at the 4f levels and in the 5d band thanks to its high energy resolution. We used thermal treatments in high vacuum and in oxygen partial pressure to induce a controlled and reversible degree of reduction in cerium oxide ultrathin epitaxial films of different thicknesses. Two dominant spectral components contribute to the measured spectra at the different degrees of oxidation/reduction. In ultrathin films a modification of the electronic properties associated with platinum substrate proximity and with dimensionality is identified. The different electronic properties induce a higher reducibility in ultrathin films, ascribed to a decrease of the surface oxygen vacancy formation energy.

12.
Angew Chem Int Ed Engl ; 54(18): 5413-6, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25752827

RESUMEN

Exploiting plasmonic Au nanoparticles to sensitize TiO2 to visible light is a widely employed route to produce efficient photocatalysts. However, a description of the atomic and electronic structure of the semiconductor sites in which charges are injected is still not available. Such a description is of great importance in understanding the underlying physical mechanisms and to improve the design of catalysts with enhanced photoactivity. We investigated changes in the local electronic structure of Ti in pure and N-doped nanostructured TiO2 loaded with Au nanoparticles during continuous selective excitation of the Au localized surface plasmon resonance with X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Spectral variations strongly support the presence of long-lived charges localized on Ti states at the semiconductor surface, giving rise to new laser-induced low-coordinated Ti sites.

13.
ACS Appl Mater Interfaces ; 6(20): 17496-505, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25255194

RESUMEN

Integration of functional oxides on Si substrates could open a pathway to integrate diverse devices on Si-based technology. Oxygen vacancies (Vo(··)) can strongly affect solid state properties of oxides, including the room temperature ferromagnetism (RTFM) in diluted magnetic oxides. Here, we report a systematical study on the RTFM of oxygen vacancy engineered (by Pr(3+) doping) CeO2 epitaxial thin films on Si substrates. High quality, mixed single crystalline Ce1-xPrxO2-δ (x = 0-1) solid solution films were obtained. The Ce ions in CeO2 with a fluorite structure show a Ce(4+)-dominant valence state in all films. The local crystal structures of the films were analyzed in detail. Pr doping creates both Vo(··) and PrO8-complex defects in CeO2 and their relative concentrations vary with the Pr-doping level. The RTFM properties of the films reveal a strong dependence on the relative Vo(··) concentration. The RTFM in the films initially increases with higher Pr-doping levels due to the increase of the F(+) center (Vo(··) with one occupied electron) concentration and completely disappears when x > 0.2, where the magnetic polaron concentration is considered to decline below the percolation threshold, thus long-range FM order can no longer be established. We thus demonstrate the possibility to directly grow RTFM Pr-doped CeO2 films on Si substrates, which can be an interesting candidate for potential magneto-optic or spintronic device applications.

14.
Biochim Biophys Acta ; 1797(4): 494-500, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20080075

RESUMEN

Transhydrogenase couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. The binding of Zn(2+) to the enzyme was shown previously to inhibit steps associated with proton transfer. Using Zn K-edge X-ray absorption fine structure (XAFS), we report here on the local structure of Zn(2+) bound to Escherichia coli transhydrogenase. Experiments were performed on wild-type enzyme and a mutant in which betaHis91 was replaced by Lys (betaH91K). This well-conserved His residue, located in the membrane-spanning domain of the protein, has been suggested to function in proton transfer, and to act as a ligand of the inhibitory Zn(2+). The XAFS analysis has identified a Zn(2+)-binding cluster formed by one Cys, two His, and one Asp/Glu residue, arranged in a tetrahedral geometry. The structure of the site is consistent with the notion that Zn(2+) inhibits proton translocation by competing with H(+) binding to the His residues. The same cluster of residues with very similar bond lengths best fits the spectra of wild-type transhydrogenase and betaH91K. Evidently, betaHis91 is not directly involved in Zn(2+) binding. The locus of betaHis91 and that of the Zn-binding site, although both on (or close to) the proton-transfer pathway of transhydrogenase, are spatially separate.


Asunto(s)
Proteínas de Escherichia coli/química , Mutación , NADP Transhidrogenasas/química , Espectrometría por Rayos X/métodos , Zinc/química , Sustitución de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Zinc/metabolismo
15.
J Synchrotron Radiat ; 17(1): 41-52, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20029110

RESUMEN

In the present work a data analysis approach, based on XAFS data, is proposed for the identification of most probable binding motifs of unknown mononuclear zinc sites in metalloproteins. This approach combines multiple-scattering EXAFS analysis performed within the rigid-body refinement scheme, non-muffin-tin ab initio XANES simulations, average structural information on amino acids and metal binding clusters provided by the Protein Data Bank, and Debye-Waller factor calculations based on density functional theory. The efficiency of the method is tested by using three reference zinc proteins for which the local structure around the metal is already known from protein crystallography. To show the applicability of the present analysis to structures not deposited in the Protein Data Bank, the XAFS spectra of six mononuclear zinc binding sites present in diverse membrane proteins, for which we have previously proposed the coordinating amino acids by applying a similar approach, is also reported. By comparing the Zn K-edge XAFS features exhibited by these proteins with those pertaining to the reference structures, key spectral characteristics, related to specific binding motifs, are observed. These case studies exemplify the combined data analysis proposed and further support its validity.


Asunto(s)
Algoritmos , Biopolímeros/química , Metaloproteínas/química , Metales/química , Espectroscopía de Absorción de Rayos X/métodos , Zinc/química , Secuencias de Aminoácidos , Sitios de Unión , Interpretación Estadística de Datos , Unión Proteica
16.
Biophys J ; 95(2): 814-22, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18456824

RESUMEN

We report on the x-ray absorption fine structure of the Fe(2+) site in photosynthetic reaction centers from Rhodobacter sphaeroides. Crystallographic studies show that Fe(2+) is ligated with four N(epsilon) atoms from four histidine (His) residues and two O(epsilon) atoms from a Glu residue. By considering multiple scattering contributions to the x-ray absorption fine structure function, we improved the structural resolution of the site: His residues were split into two groups, characterized by different Fe-N(epsilon) distances, and two distinct Fe-O(epsilon) bond lengths resolved. The effect of the environment was studied by embedding the reaction centers into a polyvinyl alcohol film and into a dehydrated trehalose matrix. Incorporation into trehalose caused elongation in one of the two Fe-N(epsilon) distances, and in one Fe-O(epsilon) bond length, compared with the polyvinyl alcohol film. The asymmetry detected in the cluster of His residues and its response to incorporation into trehalose are ascribed to the hydrogen bonds between two His residues and the quinone acceptors. The structural distortions observed in the trehalose matrix indicate a strong interaction between the reaction-centers surface and the water-trehalose matrix, which propagates deeply into the interior of the protein. The absence of matrix effects on the Debye-Waller factors is brought back to the static heterogeneity and rigidity of the ligand cluster.


Asunto(s)
Cristalografía/métodos , Hierro/química , Hierro/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Rhodobacter sphaeroides/metabolismo , Espectrometría por Rayos X/métodos , Simulación por Computador , Luz , Modelos Químicos , Modelos Moleculares , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
FEBS Lett ; 581(29): 5645-8, 2007 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18022397

RESUMEN

The metal content of bovine NADH-Q oxidoreductase determined by inductively-coupled plasma atomic-emission spectroscopy reveals the presence of about one atom of zinc per molecule of flavin mononucleotide. We applied Zn K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) to investigate the local structure of the bound zinc ion and to identify the nature of the coordinating residues. The EXAFS spectrum is consistent with a structured zinc binding site. By combining information from first-shell analysis and from metalloprotein data bases putative binding clusters have been built and fitted to the experimental spectrum using ab initio simulations. The best fitting binding cluster is formed by two histidine and two cysteine residues arranged in a tetrahedral geometry.


Asunto(s)
Quinona Reductasas/química , Zinc/química , Animales , Sitios de Unión , Bovinos , Cisteína/química , Cisteína/metabolismo , Histidina/química , Histidina/metabolismo , Modelos Moleculares , Quinona Reductasas/metabolismo , Espectrofotometría , Análisis Espectral , Relación Estructura-Actividad , Rayos X , Zinc/metabolismo
18.
Biophys J ; 93(8): 2934-51, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17573435

RESUMEN

Binding of Zn2+ has been shown previously to inhibit the ubiquinol cytochrome c oxidoreductase (cyt bc1 complex). X-ray diffraction data in Zn-treated crystals of the avian cyt bc1 complex identified two binding sites located close to the catalytic Qo site of the enzyme. One of them (Zn01) might interfere with the egress of protons from the Qo site to the aqueous phase. Using Zn K-edge x-ray absorption fine-structure spectroscopy, we report here on the local structure of Zn2+ bound stoichiometrically to noncrystallized cyt bc1 complexes. We performed a comparative x-ray absorption fine-structure spectroscopy study by examining avian, bovine, and bacterial enzymes. A large number of putative clusters, built by combining information from first-shell analysis and metalloprotein databases, were fitted to the experimental spectra by using ab initio simulations. This procedure led us to identify the binding clusters with high levels of confidence. In both the avian and bovine enzyme, a tetrahedral ligand cluster formed by two His, one Lys, and one carboxylic residue was found, and this ligand attribution fit the crystallographic Zn01 location of the avian enzyme. In the chicken enzyme, the ligands were the His121, His268, Lys270, and Asp253 residues, and in the homologous bovine enzyme they were the His121, His267, Lys269, and Asp254 residues. Zn2+ bound to the bacterial cyt bc1 complex exhibited quite different spectral features, consistent with a coordination number of 6. The best-fit octahedral cluster was formed by one His, two carboxylic acids, one Gln or Asn residue, and two water molecules. It was interesting that by aligning the crystallographic structures of the bacterial and avian enzymes, this group of residues was found located in the region homologous to that of the Zn01 site. This cluster included the His276, Asp278, Glu295, and Asn279 residues of the cyt b subunit. The conserved location of the Zn2+ binding sites at the entrance of the putative proton release pathways, and the presence of His residues point to a common mechanism of inhibition. As previously shown for the photosynthetic bacterial reaction center, zinc would compete with protons for binding to the His residues, thus impairing their function as proton donors/acceptors.


Asunto(s)
Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/ultraestructura , Modelos Químicos , Modelos Moleculares , Rhodobacter capsulatus/enzimología , Zinc/química , Animales , Sitios de Unión , Aves , Bovinos , Simulación por Computador , Unión Proteica , Especificidad de la Especie
19.
FEBS Lett ; 581(4): 611-6, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17266955

RESUMEN

EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/química , Zinc/metabolismo , Zinc/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Bovinos , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Transporte de Electrón/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Caballos , Liposomas , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Bombas de Protones/efectos de los fármacos , Protones
20.
Biophys J ; 92(4): 1350-60, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17142287

RESUMEN

We report on the structure and dynamics of the Fe ligand cluster of reduced horse heart cytochrome c in solution, in a dried polyvinyl alcohol (PVA) film, and in two trehalose matrices characterized by different contents of residual water. The effect of the solvent/matrix environment was studied at room temperature using Fe K-edge x-ray absorption fine structure (XAFS) spectroscopy. XAFS data were analyzed by combining ab initio simulations and multi-parameter fitting in an attempt to disentangle structural from disorder parameters. Essentially the same structural and disorder parameters account adequately for the XAFS spectra measured in solution, both in the absence and in the presence of glycerol, and in the PVA film, showing that this polymer interacts weakly with the embedded protein. Instead, incorporation in trehalose leads to severe structural changes, more prominent in the more dried matrix, consisting of 1), an increase up to 0.2 A of the distance between Fe and the imidazole N atom of the coordinating histidine residue and 2), an elongation up to 0.16 A of the distance between Fe and the fourth-shell C atoms of the heme pyrrolic units. These structural distortions are accompanied by a substantial decrease of the relative mean-square displacements of the first ligands. In the extensively dried trehalose matrix, extremely low values of the Debye Waller factors are obtained for the pyrrolic and for the imidazole N atoms. This finding is interpreted as reflecting a drastic hindering in the relative motions of the Fe ligand cluster atoms and an impressive decrease in the static disorder of the local Fe structure. It appears, therefore, that the dried trehalose matrix dramatically perturbs the energy landscape of cytochrome c, giving rise, at the level of local structure, to well-resolved structural distortions and restricting the ensemble of accessible conformational substates.


Asunto(s)
Citocromos c/química , Trehalosa/química , Animales , Hemo/química , Histidina/química , Caballos , Hierro/química , Modelos Moleculares , Miocardio/enzimología , Alcohol Polivinílico/química , Conformación Proteica , Soluciones , Análisis Espectral , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...