Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eukaryot Cell ; 8(3): 306-14, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19074599

RESUMEN

After glycosylphosphatidylinositols (GPIs) are added to GPI proteins of Saccharomyces cerevisiae, a fatty acid of the diacylglycerol moiety is exchanged for a C(26:0) fatty acid through the subsequent actions of Per1 and Gup1. In most GPI anchors this modified diacylglycerol-based anchor is subsequently transformed into a ceramide-containing anchor, a reaction which requires Cwh43. Here we show that the last step of this GPI anchor lipid remodeling can be monitored in microsomes. The assay uses microsomes from cells that have been grown in the presence of myriocin, a compound that blocks the biosynthesis of dihydrosphingosine (DHS) and thus inhibits the biosynthesis of ceramide-based anchors. Such microsomes, when incubated with [(3)H]DHS, generate radiolabeled, ceramide-containing anchor lipids of the same structure as made by intact cells. Microsomes from cwh43Delta or mcd4Delta mutants, which are unable to make ceramide-based anchors in vivo, do not incorporate [(3)H]DHS into anchors in vitro. Moreover, gup1Delta microsomes incorporate [(3)H]DHS into the same abnormal anchor lipids as gup1Delta cells synthesize in vivo. Thus, the in vitro assay of ceramide incorporation into GPI anchors faithfully reproduces the events that occur in mutant cells. Incorporation of [(3)H]DHS into GPI proteins is observed with microsomes alone, but the reaction is stimulated by cytosol or bovine serum albumin, ATP plus coenzyme A (CoA), or C(26:0)-CoA, particularly if microsomes are depleted of acyl-CoA. Thus, [(3)H]DHS cannot be incorporated into proteins in the absence of acyl-CoA.


Asunto(s)
Ceramidas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosilfosfatidilinositoles/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochem Soc Symp ; (74): 199-209, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17233591

RESUMEN

The mature sphingolipids of yeast consist of IPCs (inositolphosphorylceramides) and glycosylated derivatives thereof. Beyond being an abundant membrane constituent in the organelles of the secretory pathway, IPCs are also used to constitute the lipid moiety of the majority of GPI (glycosylphosphatidylinositol) proteins, while a minority of GPI proteins contain PI (phosphatidylinositol). Thus all GPI anchor lipids (as well as free IPCs) typically contain C26 fatty acids. However, the primary GPI lipid that isadded to newly synthesized proteins in the endoplasmic reticulum consists of a PI with conventional C16 and C18 fatty acids. A new class of enzymes is required to replace the fatty acid in sn-2 by a C26 fatty acid. Cells lacking this activity make normal amounts of GPI proteins but accumulate GPI anchors containing lyso-PI. As a consequence, the endoplasmic reticulum to Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. The GPI anchor containing C26 in sn-2 can further be remodelled by the exchange of diacylglycerol for ceramide. This process is also dependent on the presence of specific phosphorylethanolamine side-chains on the GPI anchor.


Asunto(s)
Glicoesfingolípidos/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Estructura Molecular , Transporte de Proteínas
3.
Mol Biol Cell ; 17(6): 2636-45, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16597698

RESUMEN

The anchors of mature glycosylphosphatidylinositol (GPI)-anchored proteins of Saccharomyces cerevisiae contain either ceramide or diacylglycerol with a C26:0 fatty acid in the sn2 position. The primary GPI lipid added to newly synthesized proteins in the ER consists of diacylglycerol with conventional C16 and C18 fatty acids. Here we show that GUP1 is essential for the synthesis of the C26:0-containing diacylglycerol anchors. Gup1p is an ER membrane protein with multiple membrane-spanning domains harboring a motif that is characteristic of membrane-bound O-acyl-transferases (MBOAT). Gup1Delta cells make normal amounts of GPI proteins but most mature GPI anchors contain lyso-phosphatidylinositol, and others possess phosphatidylinositol with conventional C16 and C18 fatty acids. The incorporation of the normal ceramides into the anchors is also disturbed. As a consequence, the ER-to-Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. Gup1Delta cells have fragile cell walls and a defect in bipolar bud site selection. GUP1 function depends on the active site histidine of the MBOAT motif. GUP1 is highly conserved among fungi and protozoa and the gup1Delta phenotype is partially corrected by GUP1 homologues of Aspergillus fumigatus and Trypanosoma cruzi.


Asunto(s)
Aciltransferasas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Cinética , Lípidos/fisiología , Datos de Secuencia Molecular , Mutación , Plásmidos , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido
4.
Mol Microbiol ; 46(3): 745-8, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12410831

RESUMEN

Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins involves the action of a GPI trans-amidase, which replaces the C-terminal GPI signal sequence (GPI-SS) of the primary translation product with a preformed GPI lipid. The transamidation depends on a complex of four proteins, Gaa1p, Gpi8p, Gpi16p and Gpi17p. Although the GPI anchoring pathway is conserved throughout the eukaryotic kingdom, it has been reported recently that the GPI-SS of human placental alkaline phosphatase (hPLAP) is not recognized by the yeast transamidase, but is recognized in yeast that contain the human Gpi8p homologue. This finding suggests that Gpi8p is intimately involved in the recognition of GPI precursor proteins and may also be responsible for the subtle taxon-specific differences in transamidase specificity that sometimes prevent the efficient GPI anchoring of heterologously expressed GPI proteins. Here, we confirm that the GPI signal sequence of hPLAP is indeed not recognized by the yeast GPI-anchoring machinery. However, in our hands, GPI attachment cannot be restored by the co-expression of human Gpi8p in yeast cells under any circumstances.


Asunto(s)
Fosfatasa Alcalina/química , Moléculas de Adhesión Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Placenta/enzimología , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae , Fosfatasa Alcalina/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Moléculas de Adhesión Celular/genética , Femenino , Humanos , Embarazo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Levaduras/enzimología , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...