Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38526744

RESUMEN

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Asunto(s)
Proteínas Activadoras de GTPasa , Heterocigoto , Microcefalia , Mutación Missense , Trastornos del Neurodesarrollo , Humanos , Microcefalia/genética , Femenino , Masculino , Preescolar , Proteínas Activadoras de GTPasa/genética , Niño , Trastornos del Neurodesarrollo/genética , Mutación con Pérdida de Función , Animales , Discapacidades del Desarrollo/genética , Ratones , Lactante , Fenotipo , Adolescente
2.
Inorg Chem ; 61(1): 520-532, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34913670

RESUMEN

A detailed investigation of the electronic structure of diazinediimine iron complexes and their comparison with the pyridine analogues reveals subtle but important differences, imparted by the supporting heterocycle. In the case of LFe(CO)2 complexes (L = pyrazine- and pyrimidinediimine), the characterization of three available redox states confirmed that whereas the nature of the electron-transfer processes is similar, the differences in π-acidity of the supporting heterocycle significantly affect the redox potentials. The reduction of LFe(CO)2 can yield either a ligand-centered radical (for L = pyrimidine) or a C-C-bonded dimer (for L = pyrazine), supported by a dearomatized core. In the latter case, the C-C bond can be reversibly cleaved oxidatively. Compared to the carbonyl analogues, employing weak-field N2 ligands triggers changes in electronic structure for the neutral and reduced LFe(N2) complexes (L = pyrimidinediimine). En route to the synthesis of the nitrogen complexes, the square-planar LFeCl (L = pyrimidinediimine) was isolated. The monoradical character of the supporting chelate triggers the asymmetric distribution of electron density around the heterocycle.

3.
Front Immunol ; 12: 595390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995343

RESUMEN

Replication competent vesicular stomatitis virus (VSV) is the basis of a vaccine against Ebola and VSV strains are developed as oncolytic viruses. Both functions depend on the ability of VSV to induce adequate amounts of interferon-α/ß. It is therefore important to understand how VSV triggers interferon responses. VSV activates innate immunity via retinoic acid-inducible gene I (RIG-I), a sensor for viral RNA. Our results show that VSV needs to replicate for a robust interferon response. Analysis of RIG-I-associated RNA identified a copy-back defective-interfering (DI) genome and full-length viral genomes as main trigger of RIG-I. VSV stocks depleted of DI genomes lost most of their interferon-stimulating activity. The remaining full-length genome and leader-N-read-through sequences, however, still triggered RIG-I. Awareness for DI genomes as trigger of innate immune responses will help to standardize DI genome content and to purposefully deplete or use DI genomes as natural adjuvants in VSV-based therapeutics.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Genoma Viral , Mutación , Receptores Inmunológicos/metabolismo , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/fisiología , Replicación Viral , Animales , Línea Celular , Genoma Viral/genética , Genoma Viral/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunomodulación , ARN Viral/genética , ARN Viral/inmunología
4.
Viruses ; 7(12): 6108-26, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26703711

RESUMEN

Mitochondria- as well as p53-based signaling pathways are central for the execution of the intrinsic apoptotic cascade. Their contribution to rubella virus (RV)-induced apoptosis was addressed through time-specific evaluation of characteristic parameters such as permeabilization of the mitochondrial membrane and subsequent release of the pro-apoptotic proteins apoptosis-inducing factor (AIF) and cytochrome c from mitochondria. Additionally, expression and localization pattern of p53 and selected members of the multifunctional and stress-inducible cyclophilin family were examined. The application of pifithrin µ as an inhibitor of p53 shuttling to mitochondria reduced RV-induced cell death to an extent similar to that of the broad spectrum caspase inhibitor z-VAD-fmk (benzyloxycarbonyl-V-A-D-(OMe)-fmk). However, RV progeny generation was not altered. This indicates that, despite an increased survival rate of its cellular host, induction of apoptosis neither supports nor restricts RV replication. Moreover, some of the examined apoptotic markers were affected in a strain-specific manner and differed between the cell culture-adapted strains: Therien and the HPV77 vaccine on the one hand, and a clinical isolate on the other. In summary, the results presented indicate that the transcription-independent mitochondrial p53 program contributes to RV-induced apoptosis.


Asunto(s)
Apoptosis , Interacciones Huésped-Patógeno , Virus de la Rubéola/fisiología , Transducción de Señal , Replicación Viral , Animales , Chlorocebus aethiops , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Permeabilidad , Proteína p53 Supresora de Tumor/metabolismo , Células Vero
5.
Stroke ; 45(8): 2431-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24984745

RESUMEN

BACKGROUND AND PURPOSE: We aimed to determine a possible synergistic effect of granulocyte colony-stimulating factor (G-CSF) and bone marrow-derived mononuclear cells (BM MNC) after stroke in spontaneously hypertensive rats. METHODS: Male spontaneously hypertensive rats were subjected to middle cerebral artery occlusion and randomly assigned to daily injection of 50 µg/kg G-CSF for 5 days starting 1 hour after stroke (groups 1, 2, and 3) with additional intravenous transplantation of 1.5×10E7 BM MNC per kilogram at 6 hours (group 2) or 48 hours (group 3) after stroke, or control treatment (group 4). Circulating leukocyte counts and functional deficits, infarct volume, and brain edema were repeatedly assessed in the first week and first month. RESULTS: G-CSF treatment led to a significant neutrophilia, to a reversal of postischemic depression of circulating leukocytes, and to a significantly improved functional recovery without affecting the infarct volume or brain edema. BM MNC cotransplantation was neutral after 6 hours, but reversed the functional effect of G-CSF after 48 hours. Short-term investigation of combined G-CSF and BM MNC treatment at 48 hours indicated splenic accumulation of granulocytes and transplanted cells, accompanied by a significant rise of granulocytes in the circulation and the ischemic brain. CONCLUSIONS: G-CSF improved functional recovery in spontaneously hypertensive rats, but this effect was abolished by cotransplantation of BM MNC after 48 hours. In the spleen, transplanted cells may hinder the clearance of granulocytes that were massively increased by G-CSF. Increased circulation and infiltration of granulocytes into the ischemic brain may be detrimental for stroke outcome.


Asunto(s)
Trasplante de Médula Ósea , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Infarto de la Arteria Cerebral Media/terapia , Accidente Cerebrovascular/terapia , Animales , Encéfalo/fisiopatología , Terapia Combinada , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/cirugía , Masculino , Neutrófilos , Ratas , Ratas Endogámicas SHR , Recuperación de la Función/fisiología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/cirugía , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA