RESUMEN
Burgess Shale-type faunas are critical to our understanding of animal evolution during the Cambrian, giving an unrivalled view of the morphology of ancient organisms and the ecology of the earliest animal-dominated communities. Rare examples in Lower Ordovician strata such as the Fezouata Biota illustrate the subsequent evolution of ecosystems but only from before the main phase of the Great Ordovician Biodiversification Event. Later Ordovician Konservat-Lagerstätten are not directly comparable with the Burgess Shale-type faunas as they do not represent diverse, open-shelf communities, limiting our ability to track ecological development through the critical Ordovician biodiversification interval. Here we present the Castle Bank fauna: a highly diverse Middle Ordovician Burgess Shale-type fauna from Wales (UK) that is directly comparable with the Burgess Shale and Chengjiang biotas in palaeoenvironment and preservational style. The deposit includes animals with morphologies similar to the iconic Cambrian taxa Opabinia, Yohoia and Wiwaxia, combined with early examples of more derived groups such as barnacles. Many taxa such as kinorhynchs show the small sizes typical of modern faunas, illustrating post-Cambrian miniaturization. Castle Bank provides a new perspective on early animal evolution, revealing the next chapter in ecosystem development following the Chengjiang, Burgess Shale and Fezouata biotas.
Asunto(s)
Ecosistema , Fósiles , Animales , Gales , BiotaRESUMEN
A crucial step in the evolution of Euarthropoda (chelicerates, myriapods, pancrustaceans) was the transition between fossil groups that possessed frontal appendages innervated by the first segment of the brain (protocerebrum), and living groups with a protocerebral labrum and paired appendages innervated by the second brain segment (deutocerebrum). Appendage homologies between the groups are controversial. Here we describe two specimens of opabiniid-like euarthropods, each bearing an anterior proboscis (a fused protocerebral appendage), from the Middle Ordovician Castle Bank Biota, Wales, UK. Phylogenetic analyses support a paraphyletic grade of stem-group euarthropods with fused protocerebral appendages and a posterior-facing mouth, as in the iconic Cambrian panarthropod Opabinia. These results suggest that the labrum may have reduced from an already-fused proboscis, rather than a pair of arthropodized appendages. If some shared features between the Castle Bank specimens and radiodonts are considered convergent rather than homologous, phylogenetic analyses retrieve them as opabiniids, substantially extending the geographic and temporal range of Opabiniidae.
Asunto(s)
Artrópodos , Evolución Biológica , Animales , Filogenia , Fósiles , Artrópodos/genética , Cabeza , Boca/anatomía & histologíaRESUMEN
Originally considered as large, solely Cambrian apex predators, Radiodonta-a clade of stem-group euarthropods including Anomalocaris-now comprises a diverse group of predators, sediment sifters and filter feeders. These animals are only known from deposits preserving non-biomineralized material, with radiodonts often the first and/or only taxa known from such deposits. Despite the widespread and diverse nature of the group, only a handful of radiodonts are known from post-Cambrian deposits, and all originate from deposits or localities rich in other total-group euarthropods. In this contribution, we describe the first radiodont from the UK, an isolated hurdiid frontal appendage from the Tremadocian (Lower Ordovician) Dol-cyn-Afon Formation, Wales, UK. This finding is unusual in two major aspects: firstly, the appendage (1.8 mm in size) is less than half the size of the next smallest radiodont frontal appendage known, and probably belonged to an animal between 6 and 15 mm in length; secondly, it was discovered in the sponge-dominated Afon Gam Biota, one of only a handful of non-biomineralized total-group euarthropods known from this deposit. This Welsh hurdiid breaks new ground for Radiodonta in terms of both its small size and sponge-dominated habitat. This occurrence demonstrates the adaptability of the group in response to the partitioning of ecosystems and environments in the late Cambrian and Early Ordovician world.
RESUMEN
Sponges (Porifera), as one of the earliest-branching animal phyla, are crucial for understanding early metazoan phylogeny. Recent studies of Lower Palaeozoic sponges have revealed a variety of character states and combinations unknown in extant taxa, challenging our views of early sponge morphology. The Herefordshire Konservat-Lagerstätte yields an abundant, diverse sponge fauna with three-dimensional preservation of spicules and soft tissue. Carduispongia pedicula gen. et sp. nov. possesses a single layer of hexactine spicules arranged in a regular orthogonal network. This spicule type and arrangement is characteristic of the reticulosans, which have traditionally been interpreted as early members of the extant siliceous Class Hexactinellida. However, the unusual preservation of the spicules of C. pedicula reveals an originally calcareous composition, which would be diagnostic of the living Class Calcarea. The soft tissue architecture closely resembles the complex sylleibid or leuconid structure seen in some modern calcareans and homoscleromorphs. This combination of features strongly supports a skeletal continuum between primitive calcareans and hexactinellid siliceans, indicating that the last common ancestor of Porifera was a spiculate, solitary, vasiform animal with a thin skeletal wall.
RESUMEN
The two major extant groups of siliceous sponges, Demospongiae and Hexactinellida, are generally regarded as sister groups forming the clade Silicea, although the nature of their last common ancestor is uncertain. The fossil record contains a diverse range of basal demosponges that appear to have evolved from hexactine-bearing reticulosan ancestors, although a compelling morphological intermediate has not previously been discovered. Here we describe a new species of fossil sponge, Conciliospongia anjiensis gen. et sp. nov., from the Late Ordovician (~444 Ma) Anji Biota of South China. This species has a reticulate, tufted skeleton of minute monaxon spicules, characteristic of the fossil demosponge family Hazeliidae and modern heteroscleromorphs, with hexactine spicules and a globose body form inherited from reticulosan ancestors. This transitional morphology had previously been hypothesized in palaeontological studies. This morphological intermediate between two extant classes further confirms siliceous sponge monophyly and demosponge-hexactinellid spicule homology, and supports the primitive, stem-silicean interpretation of simpler-structured fossil reticulosans.
Asunto(s)
Evolución Molecular , Fósiles , Paleontología , Filogenia , Poríferos/anatomía & histología , Poríferos/clasificación , Animales , Modelos TeóricosRESUMEN
In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.
Asunto(s)
Organismos Acuáticos/fisiología , Evolución Biológica , Ecosistema , Fósiles , Filogenia , AnimalesRESUMEN
The Late Ordovician (Hirnantian, approximately 445 million years ago) extinction event was among the largest known, with 85% species loss [1]. Post-extinction survival faunas are invariably low diversity, especially benthic communities [2], but ecological structure was restored relatively rapidly [1]. This pattern, however, reflects organisms with robust skeletons, as only one exceptionally preserved Hirnantian fossil biota was previously known [3, 4]; in particular, almost no Hirnantian sponges have been recorded. Our study reveals an extraordinarily diverse, sponge-dominated community thriving immediately after the Hirnantian extinction in Zhejiang, South China. Several contemporaneous sites preserve a total diversity of over 75 sponge species, many with preserved soft tissues, in pronounced contrast to normal survival and early recovery faunas. This diversity is unprecedented for any Hirnantian fossil group, and the fauna provides a unique window into a post-extinction ecosystem. The sponges are often large and structurally complex and represent numerous different lineages that survived the extinction. Layers with abundant sponge remains were deposited after other mass extinctions [5, 6], suggesting a general pattern of sponge abundance during collapse of Phanerozoic marine ecosystems. It is possible that the conditions of ecological collapse increase the particulate food sources for sponges, while they themselves are relatively unaffected by the crises. Furthermore, the abundance of sponges in the Hirnantian sequence of South China may have aided post-extinction ecosystem recovery by stabilizing the sediment surface, allowing sessile suspension feeders such as brachiopods, corals, and bryozoans to recover rapidly.
Asunto(s)
Biodiversidad , Ecosistema , Extinción Biológica , Poríferos , Animales , China , FósilesRESUMEN
The Cambrian Burgess Shale-type biotas form a globally consistent ecosystem, usually dominated by arthropods. Elements of these communities continued into the Early Ordovician at high latitude, but our understanding of ecological changes during the Great Ordovician Biodiversification Event (GOBE) is currently limited by the paucity of Ordovician exceptionally preserved open-marine faunas. Here we clarify the early stages of the GOBE by describing a new open-marine Konservat-Lagerstätte from the Early Ordovician of Wales. The Afon Gam Biota includes many lineages typical of the Cambrian Burgess Shale-type biotas, but the most abundant groups were sponges, algae and worms, with non-trilobite arthropods being unexpectedly rare. Labile tissues occur abundantly in the sponges and are also present in other groups, including brachiopods and hyoliths. Taphonomic biases are considered and rejected as explanations for arthropod rarity; the preserved biota is considered to be an approximation to the original community composition. We note that other exceptionally preserved communities in the Welsh Ordovician are also sponge-dominated, suggesting a regional change in benthic ecology during the early stages of the GOBE.
Asunto(s)
Biota , Fósiles , Animales , Artrópodos/anatomía & histología , Biodiversidad , Extinción Biológica , Poríferos/anatomía & histologíaRESUMEN
The renowned soft-bodied faunas of the Cambrian period, which include the Burgess Shale, disappear from the fossil record in the late Middle Cambrian, after which the Palaeozoic fauna dominates. The disappearance of faunas of Burgess Shale type curtails the stratigraphic record of a number of iconic Cambrian taxa. One possible explanation for this loss is a major extinction, but more probably it reflects the absence of preservation of similar soft-bodied faunas in later periods. Here we report the discovery of numerous diverse soft-bodied assemblages in the Lower and Upper Fezouata Formations (Lower Ordovician) of Morocco, which include a range of remarkable stem-group morphologies normally considered characteristic of the Cambrian. It is clear that biotas of Burgess Shale type persisted after the Cambrian and are preserved where suitable facies occur. The Fezouata biota provides a link between the Burgess Shale communities and the early stages of the Great Ordovician Biodiversification Event.
Asunto(s)
Biodiversidad , Fósiles , Biología Marina , Animales , Extinción Biológica , MarruecosRESUMEN
The relationships of the sponge classes are controversial, particularly between the calcareous and siliceous sponges. Specimens of the putative calcarean Eiffelia globosa Walcott from the Burgess Shale show the presence of diagnostic hexactinellid spicules integrated into the skeletal mesh. The arrangement of these spicules in Eiffelia is shown to be precisely equivalent to that of early protospongioid hexactinellids, and sponge growth occurred through an identical pattern to produce identical skeletal body morphology. The difference in spicule composition of the classes is interpreted through the observation of taphonomic features of Eiffelia that suggest the presence of at least two mineralogically distinct layers within the spicules. These results support molecular analyses that identify the calcarean-silicisponge transition as the earliest major sponge branch and suggest that the heteractinids were paraphyletic with respect to the Hexactinellida.