Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777143

RESUMEN

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser325 situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function. In human T cells, Ser325 is phosphorylated by glycogen synthase kinase-3 (GSK3) following TCR stimulation, which promotes its TCR-inhibitory activity. Signaling through the major TCR-dependent pathway under PTPN22 control was enhanced by CRISPR/Cas9-mediated suppression of Ser325 phosphorylation and inhibited by mimicking it via glutamic acid substitution. Global phospho-mass spectrometry showed Ser325 phosphorylation state alters downstream transcriptional activity through enrichment of Swi3p, Rsc8p, and Moira domain binding proteins, and next-generation sequencing revealed it differentially regulates the expression of chemokines and T cell activation pathways. Moreover, in vitro kinetic data suggest the modulation of activity depends on a cellular context. Finally, we begin to address the structural and mechanistic basis for the influence of Ser325 phosphorylation on the protein's properties by deuterium exchange mass spectrometry and NMR spectroscopy. In conclusion, this study explores the function of a novel phosphorylation site of PTPN22 that is involved in complex regulation of TCR signaling and provides details that might inform the future development of allosteric modulators of PTPN22.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 22 , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Humanos , Fosforilación , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Mutación con Ganancia de Función , Linfocitos T/metabolismo , Linfocitos T/inmunología , Células Jurkat , Células HEK293
2.
Arthritis Rheumatol ; 76(8): 1243-1251, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38556917

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is an autoimmune disease in which the joint lining or synovium becomes highly inflamed and majorly contributes to disease progression. Understanding pathogenic processes in RA synovium is critical for identifying therapeutic targets. We performed laser capture microscopy (LCM) followed by RNA sequencing (LCM-RNAseq) to study regional transcriptomes throughout RA synovium. METHODS: Synovial lining, sublining, and vessel samples were captured by LCM from seven patients with RA and seven patients with osteoarthritis (OA). RNAseq was performed on RNA extracted from captured tissue. Principal component analysis was performed on the sample set by disease state. Differential expression analysis was performed between disease states based on log2 fold change and q value parameters. Pathway analysis was performed using the Reactome Pathway Database on differentially expressed genes among disease states. Significantly enriched pathways in each synovial region were selected based on the false discovery rate. RESULTS: RA and OA transcriptomes were distinguishable by principal component analysis. Pairwise comparisons of synovial lining, sublining, and vessel samples between RA and OA revealed substantial differences in transcriptional patterns throughout the synovium. Hierarchical clustering of pathways based on significance revealed a pattern of association between biologic function and synovial topology. Analysis of pathways uniquely enriched in each region revealed distinct phenotypic abnormalities. As examples, RA lining samples were marked by anomalous immune cell signaling, RA sublining samples were marked by aberrant cell cycle, and RA vessel samples were marked by alterations in heme scavenging. CONCLUSION: LCM-RNAseq confirms reported transcriptional differences between the RA synovium and the OA synovium and provides evidence supporting a relationship between synovial topology and molecular anomalies in RA.


Asunto(s)
Artritis Reumatoide , Captura por Microdisección con Láser , Análisis de Secuencia de ARN , Membrana Sinovial , Humanos , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Membrana Sinovial/patología , Membrana Sinovial/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Transcriptoma , Anciano , Osteoartritis/genética , Osteoartritis/patología , Análisis de Componente Principal , Perfilación de la Expresión Génica
3.
Nat Rev Rheumatol ; 20(4): 203-215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383732

RESUMEN

Disease-modifying drugs have transformed the treatment options for many systemic autoimmune diseases. However, an evolving understanding of disease mechanisms, which might vary between individuals, is paving the way for the development of novel agents that operate in a patient-tailored manner through immunophenotypic regulation of disease-relevant cells and the microenvironment of affected tissue domains. Immunoengineering is a field that is focused on the application of engineering principles to the modulation of the immune system, and it could enable future personalized and immunoregulatory therapies for rheumatic diseases. An important aspect of immunoengineering is the harnessing of material chemistries to design technologies that span immunologically relevant length scales, to enhance or suppress immune responses by re-balancing effector and regulatory mechanisms in innate or adaptive immunity and rescue abnormalities underlying pathogenic inflammation. These materials are endowed with physicochemical properties that enable features such as localization in immune cells and organs, sustained delivery of immunoregulatory agents, and mimicry of key functions of lymphoid tissue. Immunoengineering applications already exist for disease management, and there is potential for this new discipline to improve disease modification in rheumatology.


Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Humanos , Inflamación , Inmunidad Adaptativa , Enfermedades Autoinmunes/terapia
4.
Biomater Sci ; 12(8): 2041-2056, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38349277

RESUMEN

Biomaterial-based agents have been demonstrated to regulate the function of immune cells in models of autoimmunity. However, the complexity of the kinetics of immune cell activation can present a challenge in optimizing the dose and frequency of administration. Here, we report a model of autoreactive T cell activation, which are key drivers in autoimmune inflammatory joint disease. The model is termed a multi-scale Agent-Based, Cell-Driven model of Inflammatory Arthritis (ABCD of IA). Using kinetic rate equations and statistical theory, ABCD of IA simulated the activation and presentation of autoantigens by dendritic cells, interactions with cognate T cells and subsequent T cell proliferation in the lymph node and IA-affected joints. The results, validated with in vivo data from the T cell driven SKG mouse model, showed that T cell proliferation strongly correlated with the T cell receptor (TCR) affinity distribution (TCR-ad), with a clear transition state from homeostasis to an inflammatory state. T cell proliferation was strongly dependent on the amount of antigen in antigenic stimulus event (ASE) at low concentrations. On the other hand, inflammation driven by Th17-inducing cytokine mediated T cell phenotype commitment was influenced by the initial level of Th17-inducing cytokines independent of the amount of arthritogenic antigen. The introduction of inhibitory artificial antigen presenting cells (iaAPCs), which locally suppress T cell activation, reduced T cell proliferation in a dose-dependent manner. The findings in this work set up a framework based on theory and modeling to simulate personalized therapeutic strategies in IA.


Asunto(s)
Artritis , Ratones , Animales , Linfocitos T , Autoantígenos , Activación de Linfocitos , Citocinas , Receptores de Antígenos de Linfocitos T/genética
5.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295166

RESUMEN

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Peso Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Tirosina , Proteínas Tirosina Fosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...