Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083655

RESUMEN

Existing models for estimating pesticide bioconcentration in earthworms exhibit limited applicability across different chemicals, soils and species which restricts their potential as an alternative, intermediate tier for risk assessment. We used experimental data from uptake and elimination studies using three earthworm species (Lumbricus terrestris, Aporrectodea caliginosa, Eisenia fetida), five pesticides (log Kow 1.69-6.63) and five soils (organic matter content = 0.972-39.9 wt %) to produce a first-order kinetic accumulation model. Model applicability was evaluated against a data set of 402 internal earthworm concentrations reported from the literature including chemical and soil properties outside the data range used to produce the model. Our models accurately predict body load using either porewater or bulk soil concentrations, with at least 93.5 and 84.3% of body load predictions within a factor of 10 and 5 of corresponding observed values, respectively. This suggests that there is no need to distinguish between porewater and soil exposure routes or to consider different uptake and elimination pathways when predicting earthworm bioconcentration. Our new model not only outperformed existing models in characterizing earthworm exposure to pesticides in soil, but it could also be integrated with models that account for earthworm movement and fluctuating soil pesticide concentrations due to degradation and transport.

2.
Ecotoxicol Environ Saf ; 275: 116240, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38520811

RESUMEN

Modelling approaches to estimate the bioaccumulation of organic chemicals by earthworms are important for improving the realism in risk assessment of chemicals. However, the applicability of existing models is uncertain, partly due to the lack of independent datasets to test them. This study therefore conducted a comprehensive literature review on existing empirical and kinetic models that estimate the bioaccumulation of organic chemicals in earthworms and gathered two independent datasets from published literature to evaluate the predictive performance of these models. The Belfroid et al. (1995a) model is the best-performing empirical model, with 91.2% of earthworm body residue simulations within an order of magnitude of observation. However, this model is limited to the more hydrophobic pesticides and to the earthworm species Eisenia fetida or Eisenia andrei. The kinetic model proposed by Jager et al. (2003b) which out-performs that of Armitage and Gobas (2007), predicted uptake of PCB 153 in the earthworm E. andrei to within a factor of 10. However, the applicability of Jager et al.'s model to other organic compounds and other earthworm species is unknown due to the limited evaluation dataset. The model needs to be parameterised for different chemical, soil, and species types prior to use, which restricts its applicability to risk assessment on a broad scale. Both the empirical and kinetic models leave room for improvement in their ability to reliably predict bioaccumulation in earthworms. Whether they are fit for purpose in environmental risk assessment needs careful consideration on a case by case basis.


Asunto(s)
Oligoquetos , Plaguicidas , Contaminantes del Suelo , Animales , Contaminantes del Suelo/análisis , Bioacumulación , Compuestos Orgánicos , Suelo/química
3.
J Hazard Mater ; 468: 133744, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367437

RESUMEN

The uptake and elimination kinetics of pesticides from soil to earthworms are important in characterising the risk of pesticides to soil organisms and the risk from secondary poisoning. However, the understanding of the relative importance of chemical, soil, and species differences in determining pesticide bioconcentration into earthworms is limited. Furthermore, there is insufficient independent data in the literature to fully evaluate existing predictive bioconcentration models. We conducted kinetic uptake and elimination experiments for three contrasting earthworm species (Lumbricus terrestris, Aporrectodea caliginosa, Eisenia fetida) in five soils using a mixture of five pesticides (log Kow 1.69 - 6.63). Bioconcentration increased with pesticide hydrophobicity and decreased with soil organic matter. Bioconcentration factors were comparable between earthworm species for hydrophilic pesticides due to the similar water content of earthworm species. Inter-species variations in bioconcentration of hydrophobic pesticides were primarily accounted for by earthworm lipid content and specific surface area (SSA). Existing bioconcentration models either failed to perform well across earthworm species and for more hydrophilic compounds (log Kow < 2) or were not parameterised for a wide range of compounds and earthworm species. Refined models should incorporate earthworm properties (lipid content and SSA) to account for inter-species differences in pesticide uptake from soil.


Asunto(s)
Oligoquetos , Plaguicidas , Contaminantes del Suelo , Animales , Plaguicidas/análisis , Bioacumulación , Contaminantes del Suelo/análisis , Suelo/química , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...